Python算法分析与设计:最大流算法

本文主要介绍了Python中最大流算法的分析与设计,包括最大流问题的定义、Forder-Fulkerson和Edmond-Karp算法的原理比较,以及如何利用最大流解决实际问题如二向图最大匹配和文件传输等。实验使用Win10、python3.7环境,并展示了Edmond-Karp算法的实现过程。
摘要由CSDN通过智能技术生成

Python算法分析与设计:最大流算法

一、实验目的
1、掌握最大流问题的定义,了解流量、容量以及他们之间的关系。
2、掌握通过增广路径求最大流问题的Forder-Fulkerson和Edmond-Karp算法,理解这两个算法之间的异同
3、了解将计算问题转换为最大流问题的基本流程。掌握通过最大流算法求解二向图最大匹配和文件传输中的不重合边等问题的方法。

二、实验工具
Win10操作系统、python3.7编译环境、IDLE编译器

三、实验内容
已知一个容量(流量)网络,要求应用Edmond-Karp算法,求出该容量网络的最大流,容量网络各边的容量值可以由用户设置。

四、实验调试过程
实验代码如下所示:

# -*- encoding:gbk -*-
from queue import Queue

#n #边的个数
m = 6#点的个数

residual = [[0 for i in range(m)] for j in range(m)]
#残余图的剩余流量
maxflowgraph = [[0 for i in range(m)] for j in range(m)]
#记录最大流图,初始都为0
flow = [0 for i in range(m)]
#记录增广路径前进过程记录的最小流量
pre = [float('inf') for i in range(m)]
#记录增广路径每个节点的前驱
q = Queue()
#队列,用于BFS地寻找增广路径

#设置初始图的流量走向
residual[0][1]=3
residual[0][2]=2
residual[1][2]=1
residual[1][3]=3
residual[1][4]=4
residual[2][4]=2
re
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值