时间复杂度的计算

问题1:

首先关于上图的时间复杂度的计算:

时间复杂度主要计算关键语句的执行次数。第一层循环明显执行n+1次,第二三层循环的执行次数和第一层循环中每次的值相关,不是一个常数。

直接数次数估计:

第一层的n+1次中,当i=0时,j、k只能取值0,次数为1

                             

                             当i=1时,j=0,k=0,次数为1

                                    或者 j=1,k=0,次数为1

                                             或者k=1,次数为1

                            总次数1+2

                            ...         ...

                            当i=n时,总次数1+2+3+...+n

所以总次数:1+(1+2)*2/2+...+(1+n)*n/2

所以是O(n^3)    


问题2:

void insert_sort(int a[],int len)
{
    for(int i=1;i<len;i++)
    {
        for(int j=0;j<i;j++)
        {
            if(a[j]>=a[i])
            {
                int tmp=a[i];
                for(int k=i-1;k>=j;k--)
                {
                   a[k+1]=a[k];
                }
                a[j]=tmp;
            }
        }
    }

}

这里虽然是三层for循环嵌套的结构,但是,第二层循环中,只执行了一次,所以从时间复杂度上分析,依然是只看第一层和第三层的语句执行情况,所以复杂度依旧是O(n^2)。

 上面这个函数可以改为

void insert_sort(int a[],int len)
{
    for(int i=1;i<len;i++)

    {

        int j=0;

        for(j=0;j<i;j++)
        {
            if(a[j]>=a[i])
            {

                break;

            }

        }

        int tmp=a[i];
        for(int k=i-1;k>=j;k--)
        {
            a[k+1]=a[k];
        }
        a[j]=tmp;

    }

}

可以看出二者的算法思想是一样的,所以复杂度同为O(n)




<think>嗯,用户让我介绍一下时间复杂度计算。我需要先理清楚思路,确保自己理解正确,然后一步步解释清楚。首先,我应该从基本概念入手,什么是时间复杂度,为什么它重要。然后介绍大O符号,这是最常用的表示方法。接着,可能需要分步骤讲解如何计算,比如找出基本操作、确定输入规模、计算执行次数,最后简化为大O表示。还要注意常见的例子,比如循环结构、嵌套循环,不同情况下的复杂度差异。可能用户是刚开始学习法,所以需要例子来辅助理解,避免太抽象。另外,用户可能想知道最坏情况、平均情况这些概念的区别。有没有可能用户混淆了时间复杂度和实际执行时间?需要澄清一下,时间复杂度是增长趋势,而不是具体的执行时间。还要检查有没有常见的错误,比如忽略系数和低阶项,或者错误地简化表达式。最后,总结一下步骤,帮助用户记忆。应该用简单的中文,结构清晰,分点说明,配合例子。比如,单层循环是O(n),双层嵌套是O(n²),分治法像二分法是O(log n)。可能需要提到递归的时间复杂度,比如斐波那契的递归是O(2^n),但这可能稍复杂,根据用户的理解程度决定是否深入。总之,确保内容准确,逻辑连贯,例子贴切,让用户能够逐步掌握计算方法。</think>时间复杂度计算法分析的核心内容,主要用于衡量法运行时间随输入规模增长的变化趋势。以下是逐步讲解: --- ### 一、基本概念 1. **时间复杂度**:描述法执行时间与输入规模(n)之间的关系,用大O符号(O)表示。 2. **核心思想**:忽略低阶项和常数系数,只保留最高阶项(例如 $O(n^2)$)。 --- ### 二、计算步骤 #### 步骤1:确定基本操作 找到法中执行次数最多的操作(如循环中的比较、赋值等)。 **示例**: ```python for i in range(n): # 循环内的打印是基本操作 print(i) ``` #### 步骤2:计算执行次数 统计基本操作的执行次数,用关于n的表达式表示。 **示例**: - 单层循环:执行n次 → $T(n) = n$ - 双层嵌套循环:执行$n \times n = n^2$次 → $T(n) = n^2$ #### 步骤3:简化为大O表示 保留最高阶项,去掉系数和低阶项: - 若 $T(n) = 3n^2 + 2n + 1$ → $O(n^2)$ - 若 $T(n) = 5n + 10$ → $O(n)$ --- ### 三、常见复杂度类型 1. **常数时间**:$O(1)$ ```python x = 10 + 20 # 无循环,操作次数固定 ``` 2. **线性时间**:$O(n)$ ```python for i in range(n): # 单层循环 print(i) ``` 3. **平方时间**:$O(n^2)$ ```python for i in range(n): # 双层嵌套循环 for j in range(n): print(i, j) ``` 4. **对数时间**:$O(\log n)$ ```python while n > 1: # 二分法、折半查找 n = n // 2 ``` 5. **线性对数时间**:$O(n \log n)$ 典型应用:快速排序、归并排序。 --- ### 四、递归法的时间复杂度 通过递推公式分析,例如: - **斐波那契数列(递归)**: $$T(n) = T(n-1) + T(n-2) + O(1)$$ 时间复杂度为 $O(2^n)$(指数级)。 - **二分法(递归)**: $$T(n) = T(n/2) + O(1)$$ 时间复杂度为 $O(\log n)$。 --- ### 五、注意事项 1. **最坏情况 vs 平均情况** - 快速排序的最坏复杂度是$O(n^2)$,平均复杂度是$O(n \log n)$。 2. **空间换时间** 哈希表通过额外空间实现$O(1)$的查询复杂度。 3. **实际应用** 时间复杂度不直接等于实际运行时间,但能反映法 scalability(扩展性)。 --- ### 六、总结 通过分析基本操作的执行次数,逐步简化为大O表达式,可快速评估法效率。实际应用中需结合数据规模选择合适的复杂度类型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值