时间复杂度的计算

问题1:

首先关于上图的时间复杂度的计算:

时间复杂度主要计算关键语句的执行次数。第一层循环明显执行n+1次,第二三层循环的执行次数和第一层循环中每次的值相关,不是一个常数。

直接数次数估计:

第一层的n+1次中,当i=0时,j、k只能取值0,次数为1

                             

                             当i=1时,j=0,k=0,次数为1

                                    或者 j=1,k=0,次数为1

                                             或者k=1,次数为1

                            总次数1+2

                            ...         ...

                            当i=n时,总次数1+2+3+...+n

所以总次数:1+(1+2)*2/2+...+(1+n)*n/2

所以是O(n^3)    


问题2:

void insert_sort(int a[],int len)
{
    for(int i=1;i<len;i++)
    {
        for(int j=0;j<i;j++)
        {
            if(a[j]>=a[i])
            {
                int tmp=a[i];
                for(int k=i-1;k>=j;k--)
                {
                   a[k+1]=a[k];
                }
                a[j]=tmp;
            }
        }
    }

}

这里虽然是三层for循环嵌套的结构,但是,第二层循环中,只执行了一次,所以从时间复杂度上分析,依然是只看第一层和第三层的语句执行情况,所以复杂度依旧是O(n^2)。

 上面这个函数可以改为

void insert_sort(int a[],int len)
{
    for(int i=1;i<len;i++)

    {

        int j=0;

        for(j=0;j<i;j++)
        {
            if(a[j]>=a[i])
            {

                break;

            }

        }

        int tmp=a[i];
        for(int k=i-1;k>=j;k--)
        {
            a[k+1]=a[k];
        }
        a[j]=tmp;

    }

}

可以看出二者的算法思想是一样的,所以复杂度同为O(n)




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值