第一部分 数理逻辑

目录

什么是命题

注意:

例题:

例1 下列句子中那些是命题?

联结词

例2 将下列命题符号化.

注意:

例3 设 p:天冷,q:小王穿羽绒服,将下列命题符号化

例4 求下列复合命题的真值

例题:

真值表:

例题:

例题:


什么是命题

命题:判断结果唯一的陈述句
命题的真值:判断的结果
真值的取值:真与假
真命题与假命题
注意:
感叹句、祈使句、疑问句都不是命题
陈述句中的悖论,判断结果不唯一确定的不是命题
例题:

句子“我正在说假话。”,请判断下列哪个选项是正确的(    )。

A. 不是命题

B. 简单命题(原子命题)

C. 复合命题

D. 真命题

E. 假命题

F. 真值暂未知

解:

选A,这个陈述句是一个悖论,所以不为命题

例1 下列句子中那些是命题?
(1) ^{\sqrt{2}} 是有理数 .
(2) 2 + 5 = 7.
(3) x + 5 > 3.
(4) 你去教室吗?
(5) 这个苹果真大呀!
(6) 请不要讲话!
(7) 2050 年元旦下大雪 .
解:
(1)假命题,因为其为无理数
(2)真命题
(3)不是命题,结果不唯一
(4)不是命题,疑问句
(5)不是命题,感叹句
(6)不是命题,祈使句
(7) 命题,真值未知
如果看不懂定义可以尝试看看我的解释,我自学的时候认为有些定义过于官方不易理解

联结词

定义 1.1 p 为命题,复合命题“非 p ”( 或“ p 的否定” ) p 否定式 ,记作 ¬ p ,符号 ¬ 称作 否定联结词 . 规定 ¬ p 为真当且仅当 p 为假
定义 1.2 p,q 为两个命题,复合命题“ p 并且 q ”( 或“ p q ”) 称为 p q 合取式 ,记作 p q, ∧称作 合取联结词 . 规定 p q 为真当且仅当 p q 同时为真 .
定义 1.3 p , q 为两个命题,复合命题“ p q 称作 p q 析取式 ,记作 p q ,∨称作 析取联结词 . 规定 p q 为假当 且仅当 p q 同时为假
简单来说,¬代表否定,∧代表和,∨代表或
以p,q为命题
如果p为真,则 ¬p为假
p∨q有一个真为真
p∧q有一个假为假
2 将下列命题符号化.
(1) 吴颖既用功又聪明 .
(2) 吴颖不仅用功而且聪明 .
(3) 吴颖虽然聪明,但不用功 .
(4) 张辉与王丽都是三好生 .
(5) 张辉与王丽是同学
解:
p : 吴颖用功 , q : 吴颖聪明
(1) p q
(2) p q
(3) ¬ p q
p : 张辉是三好生 , q : 王丽是三好生
(4)p q
(5) p : 张辉与王丽是同学
定义 1.4 p , q 为两个命题,复合命题“如果 p , q 称作 p q 蕴涵式 ,记作 p q ,并称 p 是蕴涵式的 前件 q 为蕴涵式的 称作 蕴涵联结词 .
记住规定: p q 为假当且仅当 p 为真 q 为假
注意:
如果 p , q 有很多不同的表述方法:
p ,就 q
只要 p ,就 q
p 仅当 q
只有 q p
除非 q , p 除非 q ,否则非 p
p 为假时, p q 恒为真,称为空证明
定义 1.5 p, q 为两个命题,复合命题“ p 当且仅当 q 称作 p q 等价式 ,记作 p q 称作 等价联结词 .
记住规定: p q 为真 当且仅当 p q 同时为真或同时为假
例3 p:天冷,q:小王穿羽绒服,将下列命题符号化
(1) 只要天冷,小王就穿羽绒服 .
(2) 因为天冷,所以小王穿羽绒服 .
(3) 若小王不穿羽绒服,则天不冷 .
(4) 只有天冷,小王才穿羽绒服 .
(5) 除非天冷,小王才穿羽绒服 .
(6) 除非小王穿羽绒服,否则天不冷 .
(7) 如果天不冷,则小王不穿羽绒服 .
(8) 小王穿羽绒服仅当天冷的时候 .
(1)p q
(2)p q
(3)p q
(4)q p
(5)q p
(6)p q
(7)q p
(8)q p
注意: p q ¬ q →¬ p 等值(真值相同)
例4 求下列复合命题的真值
(1) 2 + 2 4 当且仅当 3 + 3 6.
(2) 2 + 2 4 当且仅当 3 是偶数 .
(3) 2 + 2 4 当且仅当 太阳从东方升起 .
(4) 2 + 2 4 当且仅当 美国位于非洲 .
(5) 函数 f ( x ) x 0 可导的充要条件是 它在 x 0 连续 .
先判断两边的真值再看看是不是相同的,同真同假为真1,否则为假0
(1)
(2)0
(3)1
(4)0
(5)0
定义 1.6 合式公式
(1)单个命题变项和命题常项是合式公式 , 称作 原子命题公式
(2)若 A 是合式公式,则 ( ¬ A ) 也是
(3)若 A , B 是合式公式,则 ( A B ), ( A B ), ( A B ), ( A B ) 也是
(4)只有有限次地应用 (1)—(3) 形成的符号串才是合式公式
定义 1.7
(1) 若公式 A 是单个命题变项,则称 A 0 层公式 .
(2) A n +1( n ≥0) 层公式是指下面情况之一:
(a) A = ¬ B , B n 层公式;
    (b) A = B C , 其中 B , C 分别为 i 层和 j 层公式, n =max( i , j )
    (c) A = B C , 其中 B , C 的层次及 n ( b )
    (d) A = B C , 其中 B , C 的层次及 n ( b )
    (e) A = B C , 其中 B , C 的层次及 n ( b ).
(3) 若公式 A 的层次为 k , 则称 A k 层公式
例题:
公式 A = p , B = ¬ p , C = ¬ p q , D = ¬ ( p q ) r , E =(( ¬ p q ) r ) ( ¬ r s )
分别为 0 层, 1 层, 2 层, 3 层, 4 层公式
定义 1.8 p 1 , p 2 , … , p n 是出现在公式 A 中的全部命题变项 , p 1 , p 2 , … , p n 各指定一个真值 , 称为对 A 的一个 赋值 解释 . 若使 A 1, 则称这组值为 A 成真赋值 ; 若使 A 0, 则称这组 值为 A 成假赋值
定义 1.9 将命题公式 A 在所有赋值下取值的情况列成表 , 称作 A 真值表
真值表:

构造方法

找出所有命题变项,按层次从左到右排列,列举出所有真值情况,直到找出最后计算的公式真值情况

( p q ) →¬ r为例
        p        q        r
        p q
        ¬r
     (p q ) →¬ r
        0        0        0
        0        1        1
        0        0        1
        0        0        1
        0        1        0
        1        1        1
        0        1        1
        1        0        0
        1        0        0
        1        1        1
        1        0        1
        1        0        0
        1        1        0
        1        1        1
        1        1        1
        1        0        0
成真赋值 :000,001,010,100,110
成假赋值 :011,101,111
真值表的用途 :
求出公式的全部成真赋值与成假赋值 , 判断公式的类型
例题:

求下列公式的成假赋值(注意:若有多个成假赋值,赋值之间使用英文的逗号隔开,且顺序为二进制从小到大)

(1)¬(¬pq)∨¬r

(2)(¬q∨r)∧(p→q)

(3)(p→q)∧(¬(p∧r)∨p)


(1)011                                         pqr

(2)010,110,101,100            pqr
(3)100,101                               pqr

带入观察即可

定义 1.10
(1) A 在它的任何赋值下均为真 , 则称 A 重言式 永真式 ;        无论如何都为真
(2) A 在它的任何赋值下均为假 , 则称 A 矛盾式 永假式 ;        无论如何都为假
(3) A 不是矛盾式 , 则称 A 可满足式         可真可假
注意:重言式是可满足式,但反之不真
例题:
( p q ) →¬ r
( q p ) q p
¬ ( ¬ p q ) q

可以写出真值表观察
按层写出真值即可得出
( p q ) →¬ r为非重言式的可满足式
假设p为0,q为0,r为0,p q为0,¬r为1,( p q ) →¬ r为1
假设p为0,q为0,r为1,p q为0,¬r为0,( p q ) →¬ r为1
假设p为0,q为1,r为0,p q为1,¬r为1,( p q ) →¬ r为1
假设p为0,q为1,r为1,p q为1,¬r为0,( p q ) →¬ r为0
假设p为1,q为0,r为0,p q为1,¬r为1,( p q ) →¬ r为1
假设p为1,q为0,r为1,p q为1,¬r为0,( p q ) →¬ r为0
假设p为1,q为1,r为0,p q为1,¬r为1,( p q ) →¬ r为1
假设p为1,q为1,r为1,p q为1,¬r为0,( p q ) →¬ r为0        真推假为假
可以看出有1有0,所以为非重言式的可满足式
( q p ) q p为重言式
假设p为0,q为0                此时qp为1,(qp) q为0 , ( q p ) q p为1      
假设p为0,q为1                此时qp为0,(qp) q为0,
( q p ) q p为1
假设p为1,q为0                此时qp为1 ,(qp) q为0, ( q p ) q p为1
假设p为1,q为1                此时qp为1 ,(qp) q我1, ( q p ) q p为1
都为1,所以为重言式
¬ ( ¬ p q ) q为矛盾式
假设p为0,q为0                此时 ¬ p为1 ¬ p q 为1, ¬ ( ¬ p q ) 为0 , ¬ ( ¬ p q ) q为0      
假设p为0,q为1                此时
¬ p为1,¬p q 为1, ¬ ( ¬ p q ) 为0, ¬ ( ¬ p q ) q为0
假设p为1,q为0                此时 ¬ p为0,¬p q 为0 , ¬ ( ¬ p q ) 为1, ¬ ( ¬ p q ) q为0
假设p为1,q为1                此时 ¬ p为0,¬p q 为1 , ¬ ( ¬ p q ) 为0, ¬ ( ¬ p q ) q为0
都为0,所以为矛盾式
  • 27
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星与星熙.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值