洛谷3604 美好的每一天

76 篇文章 0 订阅
15 篇文章 0 订阅

标签:莫队

题目

题目传送门

题目背景

时间限制3s,空间限制162MB

素晴らしき日々

我们的情人,不过是随便借个名字,用幻想吹出来的肥皂泡,把信拿去吧,你可以使假戏成真。我本来是无病呻吟,漫无目的的吐露爱情—现在这些漂泊不定的鸟儿有地方栖息了,你可以从信里看出来。拿去吧—由于不是出自真心,话就说得格外动听,拿去吧,就这么办吧…

由于世界会在7月20日完结,作为救世主,间宫卓司要在19日让所有人回归天空

现在已经是19日傍晚,大家集合在C栋的天台上,一共n个人

在他们面前,便是终之空,那终结的天空

题目描述

回归天空是一件庄重的事情,所以卓司决定让大家分批次进行,给每个人给了一个小写字母’a’->’z’作为编号

一个区间的人如果满足他们的编号重排之后可以成为一个回文串,则他们可以一起回归天空,即这个区间可以回归天空

由于卓司是一个喜欢妄想的人,他妄想了m个区间,每次他想知道每个区间中有多少个子区间可以回归天空

因为世界末日要来了,所以卓司的信徒很多

输入格式

第一行两个数n,m

之后一行一个长为n的字符串,代表每个人的编号

之后m行每行两个数l,r代表每次卓司妄想的区间

输出格式

m行,每行一个数表示答案

样例

输入样例#1

6 6
zzqzzq
1 6
2 4
3 4
2 3
4 5
1 1

输出样例#1

16
4
2
2
3
1

提示与说明

对于10%的数据,n,m<=100

对于30%的数据,n,m<=2000

对于100%的数据,n,m<=60000

字符集大小有梯度

在大家回归天空之后,彩名露出了阴冷的笑容

分析

这题太毒瘤了!疯狂卡常

我是不会告诉你们我开了O2才AC的


一个区间可以重排成为回文串,即区间中最多有一个字母出现奇数次,其他的都出现偶数次

这个原理和XOR类似

如果一个区间的异或和为0或2^x,则可以重排成为回文串

用a数组记录1->i的异或和

然后莫队解决

code

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#define mem(x,num) memset(x,num,sizeof x)
#define reg(x) for(int i=last[x];i;i=e[i].next)
using namespace std;
inline ll read()
{
    ll f=1,x=0;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int maxn=6e4+6;
int n,m,t,blo,belong[maxn],a[maxn],ans[maxn],re;
unsigned short cnt[1<<26]; 
char s[maxn];

struct ask{int l,r,pos;}q[maxn];
inline bool cmp(ask a,ask b){
    return belong[a.l]^belong[b.l]?belong[a.l]<belong[b.l]:belong[a.l]&1?a.r<b.r:a.r>b.r;
} 
void insert(int x){
    rep(i,0,t-1)re+=cnt[x^(1<<i)];
    re+=cnt[x]++;
}
void erase(int x){
    rep(i,0,t-1)re-=cnt[x^(1<<i)];
    re-=--cnt[x];
}
int main()
{
    n=read(),m=read();scanf("%s",s+1);
    rep(i,1,n)t=max(t,s[i]-'a'+1);
    blo=n/sqrt(m*2/3);
    rep(i,1,n)belong[i]=(i-1)/blo,a[i]=a[i-1]^(1ll<<s[i]-'a');
    rep(i,1,m)q[i].l=read(),q[i].r=read(),q[i].pos=i;
    sort(q+1,q+1+m,cmp);
    for(int i=1,l=1,r=0;i<=m;i++){
        while(l>q[i].l)insert(a[--l]);
        while(r<q[i].r)insert(a[++r]);
        while(l<q[i].l)erase(a[l++]);
        while(r>q[i].r)erase(a[r--]);
        insert(a[l-1]);
        ans[q[i].pos]=re;
        erase(a[l-1]);
    }
    rep(i,1,m)cout<<ans[i]<<endl;
    return 0;
}
题目描述似乎缺失了关键信息,通常我会需要了解“P10780 食物”是什么具体的算法竞赛题目,它来自在线平台洛谷(Luogu),以及该题目的大致背景、条件和目标。洛谷食物(Food)可能是某种数据结构或算法问题,比如贪吃蛇、分配任务等。 然而,我可以给你提供一个通用的模板: **[洛谷 P10780 食物 - 题目解析]** 题目名称:P10780 食物(假设是关于食物分配或者饥饿游戏的问题) 链接:[插入实际题目链接] **背景:** 此题通常涉及动态规划或者搜索策略。场景可能是有n个参与者(选手或角色),每个都有特定的食物需求或者优先级,我们需要在有限的食物资源下合理分配。 **分析:** 1. **输入理解**:首先读入n个参与者的信息,包括每个人的需求量或优先级。 2. **状态定义**:可以定义dp[i][j]表示前i个人分配完成后剩余的食物能满足第j个人的最大程度。 3. **状态转移**:递推式可能涉及到选择当前人分配最多食物的版本,然后更新剩余的食物数。 4. **边界条件**:如果剩余食物不足以满足某人的需求,则考虑无法分配给他;如果没有食物,状态值设为0。 5. **优化策略**:可能需要对状态数组进行滚动更新,以减少空间复杂度。 **代码示例(伪代码或部分关键代码片段):** ```python # 假设函数分配_food(demand, remaining)计算分配给一个人后剩余的食物 def solve(foods): dp = [[0 for _ in range(max_demand + 1)] for _ in range(n)] dp = foods[:] # 从第一个到最后一个参与者处理 for i in range(1, n): for j in range(1, max_demand + 1): if dp[i-1][j] > 0: dp[i][j] = max(dp[i][j], dp[i-1][j] - foods[i]) dp[i][j] = max(dp[i][j], distribute_food_to(i, dp[i-1][j])) return dp[n-1][max_demand] ``` **相关问题--:** 1. 这道题是如何运用动态规划的? 2. 如果有优先级限制,应该如何调整代码? 3. 怎样设计搜索策略来解决类似问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值