树
树的定义
是一个抽象数据类型(ADT)或是作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它由n个有限节点组成一个具有层次关系的集合。
树的特点
- 每个节点有零个或者多个子节点。
- 没有父节点的节点称为根节点。
- 每一个非根节点有且只有一个父节点(重要)。
- 除了根节点外,每个子节点可以分为多个不相交的子树。
树的术语
- 节点的度——一个节点含有的子树的个数。
- 树的度——一棵树中,最大的节点的度。
- 叶节点或终端节点——度为0的节点。即没有子节点的节点。
- 父亲节点或父节点——若一个节点含有子节点,则这个节点称为其子节点的父节点。
- 孩子节点或子节点——一个节点含有的子树的根节点称为该节点的子节点。
- 兄弟节点——具有相同父节点的节点互称为兄弟节点。
- 节点的层次——从根开始定义,根为第一层,根的子节点为第二层,以此类推。
- 树的高度或深度——树中节点的最大层次。
- 堂兄弟节点——父节点在同一层的节点互为堂兄弟节点。
- 节点的祖先——从根到该节点所经分支上所有节点。
- 子孙——以某节点为根的子树中任一节点都成为该节点的子孙。
- 森林——由m(m>0)颗互不相交的树的集合。
树的种类
- 无序树——树中任意节点的子节点之间没有任何顺序关系,这种树称为无序树,也称为自由树。
- 有序树——树中任意节点的子节点之间有顺序关系,这种树称为有序树。
- 二叉树:每个节点最多含有两个子树的树。
(1)完全二叉树:对于一颗二叉树,若设二叉树高度为h,除了第h层,其他各层(1~h-1)的节点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排序,这就是完全二叉树;满二叉树:除了叶结点外,每个结点都有左右子叶且叶子结点都处在最底层的二叉树。
(2)平衡二叉树(AVL树):当且仅当任何一个结点的子树的高度差不大于1。
(3)二叉排序树:也称二叉搜索树,二叉排序树。
-雷曼夫树(用于信息编程)——带权路径最短的二叉树,也称最优二叉树。
-B树——一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。
树的存储与表示
- 顺序存储:将数据结构存储在固定的数组中,在遍历速度上有一定优势,但因所占空间较大,是非主流二叉树。用数组。(不是很常见)
- 链式存储:缺陷是指针域指针个数不稳定。(常见)
常见的一些树的应用场景
1.xml、html等,那么编写这些东西的解析器时,不可避免用到树。
2.路由协议就是使用树的算法。
3.MySQL数据库索引。
4.文件系统的目录结构。
5.很多经典的AI算法都是树的结构,机器学习中的decision tree也是树结构。
二叉树
二叉树的基本概念
二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”和“右子树”。
二叉树的性质(特性)
性质1:在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2:深度为k的二叉树至多有2^k-1个结点(k>0)
性质3:对于任意一颗二叉树,如果其叶结点树为N0,而度数为2的结点总数为N2,则N0=N2+1
性质4:具有n个结点的完全二叉树的深度必为log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i的结点,其左孩子编号必为2i,其右编号必为2i+1,其双亲编号必为i/2(i=1时为根除外)
二叉树的遍历
二叉树的广度优先遍历(层次遍历)
类似于队列。
#coding=utf