Chapter 4 分类

分类:概率生成模型

分类举例

  • 资信评估:输入——收入、储蓄、职业、年龄、过去的金融历史;输出——接受或拒绝。
  • 医疗诊断:输入——当前症状、年龄、性别、既往病史;输出——哪种疾病。
  • 手写汉字识别
  • 人脸识别:输入——人脸图像;输出——人。

示例——宝可梦

模型:

损失函数:L(f)=\sum\delta (f(x^{n})\neq \widehat{y}^{n}),意为:f在训练数据上得到错误结果的次数。

找到最佳函数,例如感知器、SVM……

用于分类的训练数据:

训练时——类别1表示目标为1;类别2表示目标为-1 

测试时——更接近1的划分为类别1;更接近-1的划分为类别2

贝叶斯公式:

用途:可用于推测某个宝可梦属于哪些属性的概率问题,如下所示。

每个神奇宝贝都由其属性表示为一个向量,拿考虑防守和SP防守这两个属性举例,所以得到很多个二维向量,假设这些点是从高斯分布中采样的。

高斯分布:
输入:向量x;输出:抽样概率x 。

函数的形状由均值\mu和协方差矩阵\sigma决定的。

 

 

 步骤总结:
(1)建立函数

(2)函数的优度。找到使可能性(生成数据的概率)最大化的均值μ和协方差σ

(3)找到最佳函数

概率分布

你可以使用你喜欢的分布,例如高斯分布等等;

对于二元特征,您可以假设它们来自伯努利分布;

如果你假设所有的维度都是独立的,那么你使用的是朴素贝叶斯分类器。

后验概率

P(C_{1}|x)=\frac{P(x|C_{1})P(C_{1})}{P(x|C_{1})P(C_{1})+P(x|C_{2})P(C_{2})}

令:z=ln\frac{P(x|C_{1})P(C_{1})}{P(x|C_{2})P(C_{2})}

所以:P(C_{1}|x)=\frac{1}{1+\frac{P(x|C_{1})P(C_{1})}{P(x|C_{2})P(C_{2})}}=\frac{1}{1+exp(-z)}=\sigma (z),即Sigmoid函数。

 z=ln\frac{P(x|C_{1})}{P(x|C_{2})}+ln\frac{P(C_{1})}{P(C_{2})},其中\frac{P(C_{1})}{P(C_{2})}=\frac{\frac{N_{1}}{N_{1}+N_{2}}}{\frac{N_{2}}{N_{1}+N_{2}}}=\frac{N_{1}}{N_{2}}

 

 

 

 

 在生成模型中,我们估计N_{1},N_{2},\mu ^{1},\mu ^{2},\sum,我们就可得到w,b的值。

分类:逻辑回归

步骤

(1)建立函数:包括所有不同的w,b

(2)模型的优度

 

(3)找到最佳函数

 

 

 

逻辑回归:

逻辑回归与线性回归的区别

逻辑回归的不足

当函数点如下图分布,就无法利用逻辑回归将其很好得分开

 解决办法:特征转换,假设x_{1}^{'}为到\begin{bmatrix} 0\\ 0 \end{bmatrix}的距离,x_{2}^{'}为到\begin{bmatrix} 1\\ 1 \end{bmatrix}的距离。

所以上面的函数点就会变成下面这种分布:

深度学习

步骤

 (1)神经网络(Neural Network)

不同的连接导致不同的网络结构

全连接前馈网络:

 

 

(2)模型优度(goodness of function)

 

 (3)找到最佳函数(pick the best function)——利用梯度下降法

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值