计算语言学课程笔记(一)

本文提供了计算语言学和自然语言处理的学习资源,包括英文书籍如'Foundations of Statistical Natural Language Processing',中文书籍如'统计自然语言处理',以及重要的学术期刊和会议,如ACL年会和COLING。
摘要由CSDN通过智能技术生成
本文及本系列文章都是原创,欢迎分享。
转载请注明出处。 转载请注明出处。转载请注明出处。
重要的事情说三遍。
All rights reserved.
-------------------------------------------------------------------------------------------------------------------
写在前面的话,

本科大三的时候选修过王晓捷老师的自然语言处理导论课。当时这门课学的糊里糊涂,王老师推荐的教材" Foundations of Statistical Natural Language Processing"也没有完整的细看一遍,课程的大作业是实现几种常见的分词算法,我也只是草草了事敷衍对待。因此对很多东西的理解都是肤浅而片面的,比如计算语言学(CL)和自然语言处理(NLP)这两个大的概念的理解,以及对于NLP在学界以及业界的不同使用和讨论。现在看来,当时对很多NLP应用方法的学习和掌握也是不得要领。更因为近几年来深度学习和NLP方向的火热而有些迷失了语言学本来的面貌,业界可以浮躁喧嚣,但是做研究一定要踏踏实实。目前这个圈子的跟风太严重,也不方便说的太深。经典之所以为经典是因为它有很多本质的东西被提炼并加以传承,而后人在传承的基础之上也加入和最新的理解并发扬。

计算语言学发展了几十年到今天,历史上经验主义和规则主义的两派之争仍在继续。而借助于如今大规模的GPU以及高性能的计算硬件似的传统的很多算法以及思路从不可能变成了轻而易举的问题。硬件的发展随之带来的人类迫切的想要理解自然语言的需求愈发强烈,而巨大的市场和广阔的领域却对应着NLP领域高端人才匮乏,入门菜鸟泛滥这一现状。而分词,标注,句法分析,语法分析这些底层的语言学应用依然占有重要地位;机器翻译,问答系统,情感分析,主题模型,知识图谱这类高层次的NLP应用也在各领域有了井喷般的需求增长。

所以两年以后,当我再一次有机会从头开始学计算语言学这门学科的时候,我想摒弃掉从前那种跟风似的学习,追星族般的思考问题。而是真正定下来,把它当做一个喜欢的爱好,研究,分析并且应用。也得益于一年前我在语言所的半年实习经历,让我从research的角度体会并了解了NLP的历史与发展,目前的方向与应用,当时读的都是DL的文章,于是被蒙蔽了双眼,以为这个世界只有这一种方法论,这样是要不得的。虽然我现在的方向和NLP隔得挺远,但也正好以一个局外人的身份来学习研究这份知识,没有了厉害关系,也许更能接近我想要的答案。
当繁华落尽,洗尽铅华之后,我希望学习到的是这门学科让我着迷的内涵和本质-那就是科学与人文的十字路口绽放的鲜花,而不是历史上昙花一现转瞬即逝的尘埃。

语言学是门有意思的学科,它不是机械的使用计算机来做常规的语言学分析,而是通过建立形式语言到自然语言的模型来更好的理解和处理自然语言本身已提供我们队语言的理解。我不太认同把自然语言理解提升到人工智能那么一个高度,目前的人工智能都是假的,基于数据驱动的很多操作都只是"天下武功唯快不破",比起好莱坞科幻电影里的机器人还差得远。Siri实现了人智吗?没有,这背后也不过是一套配有整个苹果生态的系统的机器问答系统。所以CL既需要我们队计算机体系的了解,更需要我们对自然语言的文法,规则以及语义的深刻理解。只有这样才能做出真正满足要求的应用。

所以接下来这个学期,我打算把自己所选课程里的笔记一起记录下来,再附之以自己的见解和看法,一来可以锻炼一下自己的写作和总结能力,二来也能权当一个对自己的督促和提醒,也算是不辜负了自己的兴趣,非常感谢能够本科的时候遇到王晓捷老师,带我入门了CL这个有意思的领域,也很感谢做研究的时候能够和语言所的老师们深入的学习,更感谢能选上常宝宝老师开设的这么计算语言学的课(这个课真的很受欢迎,很多同学站在门口或者坐在讲台前面听)。能够遇到当代的几位本领域的大师已属不易,而能够如此近距离的接触和言传身教更觉得惶恐,没有理由深入的学习下去。
------------------------------------------------------------------------------------------------------------------
第一讲,Introduction

本门课程的推荐教材是Stanford的Dan Jurafsky出的一本"
  • 9
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值