基于规则经验主义和基于统计的自然语言处理方法的比较

本文探讨了自然语言处理中基于规则经验主义和基于统计方法的差异。早期研究受印欧语言文法影响,侧重于句子成分分析和语义获取。然而,面对复杂的语法结构和大规模语料库,统计方法如二元模型在语音识别和机器翻译中展现出优势。随着基于统计方法的普及,其简单有效的模型逐渐成为主流,但并不意味着规则经验主义的消亡,科学的进步往往伴随着不同理论的碰撞和融合。
摘要由CSDN通过智能技术生成

这学期为了逼着自己学,选了门NLP的课,之前一直没了解过,上了两次课后让写点看法,不才写就此文。就权当我为这门课攒个人品啦!


/***********************************************程序员专用分割线*********************************************/

从我去年看吴军博士出的《数学之美》一书第一次接触到自然语言处理这个名词到现在也不过一年的时间,其中所运用到的方法和技术也日趋成熟,作为一个正在走上坡路的方向,越来越多的人把兴趣方向转到了这里。在各个技术方向都有巨大进展的今日,任何一个分支的局部发展都可能带来整个领域的翻天覆地的编个。NLP的火热也让人们对人工智能这个概念有了更深的理解。

    语言是信息的载体,信息论中有关于信息量的计算的概念。我们在讨论自然语言处理时,很有必要把语言从数学的角度给出一个定义。在我看来,语言的数学本质是一种编码方式,而某种语言的语法就是它的编解码算法,所得到的结果就是一串承载了信息的文字。

    在先前的课程中我们学过形式语言与自动机,以文法分类的观点来看,自然语言属于的是“1”型语言即上下文相关的语言,而我们日常使用到的计算机程序设计语言属于“2”型语言—上下文无关语言。这两个分类直接影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值