问题
将一个正整数拆分成若干个正整数的和。
输入格式:
一个正整数n
输出格式:
若干行,每行一个等式(每个数或者等号间都有一个空格,第一个数前没有空格,最后一个数后面没有空格,数与数之间要求非降序排列)。最后一行给出解的总个数
输入样例:
在这里给出一组输入。例如:
4
输出样例:
在这里给出相应的输出。例如:
4 = 1 + 1 + 1 + 1
4 = 1 + 1 + 2
4 = 1 + 3
4 = 2 + 2
4
源代码:
#include<iostream>
using namespace std;
int n,* arr,total=0;
void backTrack(int s,int k) {
if (s == 0) {//累加和等于n,输出解
k = k - 1;//因为每次回溯判断是在下一轮backTrack(s-i,k + 1),即这时的arr[k]是没有存有数据的
total++;//解个数加1
cout << n << " = ";
for (int i = 1; i <=k; i++) {
cout << arr[i];
if (i < k) {//输出格式,最后一个数不需要输出+号
cout << " + ";
}
}
cout << endl;
}
for (int i = arr[k - 1]; i <= s; i++) {//循环寻找每个可能的解
if (i < n) {//防止出现例如7 = 7的情况
arr[k] = i;//存入数据
backTrack(s-i,k + 1);//判断下一个数是否符合
}
}
//这里回溯的隐含的,s==0,则不进入循环;同时回溯到循环内,i++,继续循环
}
int main() {
cin >> n;
arr = new int[n+1];
for (int i = 0; i <=n; i++) {//初始化数组
arr[i] = 1;
}
backTrack(n,1);//回溯
cout << total << endl;//输出总的解个数
return 0;
}