树型问题
lca
见我的的另外一个博客
我的博客
dfs序
我们知道两个点x,y
如何快速的判断y是不是在x的子树内
先上代码
void dfs(int x){
l[x]=++cnt;//这个点何时进入dfs、
for(int i=head[x];i;i=nex[i]){
dfs(to[i]);
}
r[x]=cnt;//这个点何时出dfs
}
这里我们就可以得出,假设z是x一个子树,则l[x]<=l[z]<=r[z]<=r[x]
如果要判断是不是子树内,只用判断dfs序就好了
最小生成树
感觉这个不算是树型问题,但是不想再开一篇博客了,所以就在这里讲一下把。
这个的思想其实就是贪心,我们把所有的边权去排序,之后从小到大去拿,如果拿上这条边出现了环,则不拿,最后当拿了n-1条边的时候就好了。
这里我们用并查集去维护不出现环,假如两个点之前在一个集合里(也就是是这棵树上的),那咋加入这个边就会出现环
最后这个用数组版链式前向星星没法写,所以就只好忍痛割爱写结构体了(注意这里虽然是无向图,但是我们每一条边之会拿一次,并且不用去走路线,所以反向边就没必要了),还有如果这个图不连通那么最后是一定拿不上n-1个点的,可以画个图去想一下,比较好理解
#include<bits/stdc++.h>
using namespace std;
int n,m;
struct edge{
int from;
int to;
int val;
};
edge t[500000];
int num=0;
void add(int x,int y,int z){
t[++num].from=x;
t[num].to=y;
t[num].val=z;
}
bool cmp(edge x,edge y){
return x.val<y.val;
}
int fa[300000];
int find(int x){
if(fa[x]==x) return x;
else return fa[x]=find(fa[x]);
}
int tot=0,ans=0;
void kruskal(){
int g,v;
for(int i=1;i<=m;i++){
g=t[i].from;
v=t[i].to;
g=find(g);
v=find(v);
if(g==v) continue;
else {
tot++;
ans+=t[i].val;
fa[g]=v;
}
if(tot==n-1){
printf("%d",ans);
return;
}
}
cout<<"orz"<<endl;//这个图如果不连通就不会找到这么多条边
}
int main(){
scanf("%d%d",&n,&m);
int a,b,c;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
sort(t+1,t+1+m,cmp);
for(int i=1;i<=n;i++){
fa[i]=i;
}
kruskal();
return 0;
}
树链剖分
树的直径
这个也是一个比较简单的知识点,首先对于书的直径的定义是树上最长的一条路,我们要找的就是这个路的长,这个的求法有两种,一个使用dp,另一个是用dfs,这里我用dfs来找
两次dfs就可以求出这个书的直径。首先是的dfs1去找随便从一个点出发所可以到达的最远点,这个点显然就是直径的一边,用反证法证明,假如这个点不是,那么就会有一个更长的边出现,我们显然要去选那个点,但是没有所以一定是这个点,
之后就再一次的dfs去找另外一个最远的点就可以找到这条直径了。
代码如下
int whi;
int dis[maxn];
int maxd=-1;
void dfs1(int x,int f){
if(dis[x]>maxd){
maxd=dis[x];
whi=x;
}
for(int i=head[x];i;i=nex[i]){
if(to[i]==f) continue;
dis[to[i]]=dis[x]+1;//这道题的边权全是一,因题而异
dfs1(to[i],x);
}
}
int fa[maxn];
void dfs2(int x,int f){
fa[x]=f;
if(dis[x]>maxd){
maxd=dis[x];
whi=x;
//cout<<whi<<endl;
}
for(int i=head[x];i;i=nex[i]){
if(to[i]==f) continue;
dis[to[i]]=dis[x]+1;
dfs2(to[i],x);
}
}
这里多加的fa数组,可以帮助你去找到这个直径的中点,就是不断的向上去跳。
再加上一道题目
这里
奇奇怪怪的知识点
1。 n个点n-1条边可以连出一棵树,n-2可以连出2颗树,所以说n-k 条边可以连出k棵树。
2。n个点每一个点只会连出去一条边(注意是连出去,不是入度和出度),那么这个图是一个基环树,也就是在一个环是树上的一点,这个图一般会有dp,这个我们可以把环拆开,之后对于这个拆开的两个点去处理,这个可以用dfs去找环。