Python爬虫探秘:豆瓣电影Top250数据获取与反爬虫机制破解之路


前言

本文仅供参考,爬取豆瓣电影等内容可能涉及法律问题。请遵循相关使用条款,若涉及任何违法行为产生的后果,请您自行承担。

本篇文章讲述了在提取豆瓣电影TOP250信息中,利用多种技术手段可以有效地提高数据提取的效率与安全性。首先,使用 requests 库发送 HTTP 请求并设置 User-Agent 以避免被网站识别,同时采用代理 IP 隐藏真实地址,降低被封禁的风险。通过 threading 库实现多线程并发请求,加速爬取过程。数据解析方面,使用 lxml 的 etree 结合 XPath 表达式提取目标信息,尽量避免异常的出现,并在出错时重试。最终,通过 pymysql 将数据安全存储到 MySQL 数据库中,确保数据的有效管理。


提示:以下是本篇文章正文内容,下面案例可供参考

一、相关技术概述

  1. HTTP请求
    使用 requests 库发送 HTTP 请求,获取网页内容。
    通过设置 User-Agent 模拟浏览器请求,以避免被网站识别为爬虫。
  2. 代理IP
    使用代理IP列表 (proxy_list) 来随机选择代理进行请求。这有助于隐藏真实IP地址,减少被网站封禁的风险。
  3. 多线程
    使用 threading 库实现多线程并发请求,提升爬取效率。每个页面的爬取都在独立线程中进行,从而加快整体爬取速度。
  4. HTML解析
    使用 lxml 库中的 etree 进行 HTML 解析,提取所需数据。
    通过 XPath 表达式查找特定元素(如电影标题、评分、排名、评价人数、影片主页链接)。
  5. 异常处理
    使用 try-except 语句捕获请求异常(如网络错误、超时等),并在出现错误时进行重试。
  6. 数据库操作(mysql数据库存储信息)
    使用 pymysql 库连接 MySQL 数据库,将爬取的数据存储到数据库中。
    在数据库中插入数据时,使用参数化查询(%s)来防止 SQL 注入攻击。

二、前期准备工作

在正式开始项目之前,我们需要完成以下准备工作:

1.Python 安装

下载并安装最新版本的 Python(推荐使用 Python 3.12.1)以确保我们可以利用其最新功能和库。可以访问Python 官方网站进行下载。
我自己的python版本:Python 3.12.1
在这里插入图片描述

2.MySQL 安装

安装 MySQL 数据库,以便管理和存储项目所需的数据。你可以从 MySQL 官方网站 获取安装包和相关文档。我推荐使用小皮面板 phpStudy v8.1版本,它的界面对新手非常友好,操作简单,安装过程也很轻松,环境配置不复杂。
在这里插入图片描述

3.需要的库

以下库需通过终端使用pip进行安装:

requests
lxml
pymysql

requests:用于发送 HTTP 请求。
lxml:用于解析和处理 XML 和 HTML 文档。
pymysql:用于连接和操作 MySQL 数据库。
其他的库,如 time、threading 和 random是 Python 的内置库,不需要单独安装。
因此,你可以使用以下命令在终端安装所需的库:

pip install requests lxml pymysql  

二、分析网页,实现爬取逻辑

我们要爬取的网页是豆瓣电影Top250:https://movie.douban.com/top250
在这里插入图片描述
通过分析页面可以知道每页显示25部电影,start=0 时从第1部开始显示,start=25时从第26部开始显示。所以需要爬取的网页链接:“https://movie.douban.com/top250?start={page * 25}&filter=”,使用这个链接时,通过替换 {page * 25} 的值可以获取不同页码的电影数据,从而逐页爬取豆瓣电影Top 250的相关信息。
例如:
如果 page 为0,start=0,获取第一页的电影。
如果 page 为1,start=25,获取第二页的电影,以此类推。

浏览器显示了豆瓣电影top250相关信息,包括电影标题、评分、排名、评价人数等。通过浏览器开发者工具(F12)还可看到视频对应的链接地址。这里的电影标题、评分、排名、评价人数、影片主页链接就是我们需要提取的目标数据。
在这里插入图片描述
在这里插入图片描述

找到所需提取的信息,然后右键单击以复制其XPath。
比如电影标题://*[@id=“content”]/div/div[1]/ol/li[1]/div/div[2]/div[1]/a/span[1]
在这里插入图片描述

三、 规划数据存储方式

将提取到的信息保存到mysql数据库中
启动小皮
在这里插入图片描述
在数据库那创建数据库
在这里插入图片描述

连接数据库,我选择默认的root用户进行连接。
在这里插入图片描述
在这里插入图片描述
创建数据库douban
在这里插入图片描述

创建表shuju
在这里插入图片描述

创建五个列(以下是我后期提取成功的数据)
在这里插入图片描述
不想重新下载工具使用以上方法即可,推荐下载工具:Navicat Premium 15(我自己使用的),操作简单。
在这里插入图片描述

四、设置反爬虫策略

1.设置UA头

通过设置 User-Agent 模拟浏览器请求,以避免被网站识别为爬虫。
在这里插入图片描述
去自己的浏览器,F12打开开发者工具或者右键点击检查
复制User-Agent 的内容
在这里插入图片描述

2. 代理IP

使用代理IP列表 (proxy_list) 来随机选择代理进行请求。这有助于隐藏真实IP地址,减少被网站封禁的风险。
获取免费代理ip:

import requests
from lxml import etree

ip_list = []
headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0"
}

def get_ip(url, headers):
    response = requests.get(url=url, headers=headers)
    response.encoding = "utf8"
    if response.status_code == 200:
        html = etree.HTML(response.text)
        # 获取代理 IP 的表格行
        tr_list = html.xpath('//*[@id="tabli"]/tr')  # 获取所有行
        count = 0  # 初始化计数器
        for tr in tr_list[1:]:  # 跳过表头
            ip = tr.xpath('td[1]/text()')  # 取出 IP
            port = tr.xpath('td[2]/text()')  # 取出端口
            if ip and port:  # 确保获取到数据
                # 只保留 ip:port 的格式
                proxy = f"{ip[0]}:{port[0]}"
                ip_list.append(proxy)  # 格式为 ip:port
                print(f"代理ip为:{proxy}")
                count += 1  # 更新计数器
                if count >= 50:  # 如果已经获取到 50条数据
                    break

if __name__ == '__main__':
    # 设置只抓取一页的 URL
    url = "https://www.proxy-list.download/HTTP"
    
    get_ip(url, headers)
    
    # 将IP写入txt文件
    with open("ip.txt", "w") as f:
        for ip in ip_list:
            f.write(ip + "\n")  # 每个IP占一行,格式为 ip:port

    print(f"已成功将爬取的 {len(ip_list)} 个代理 IP 保存到 ip.txt 中。")

在这里插入图片描述
在这里插入图片描述
这里面提供了许多代理ip,但是我们尝试过后会发现并不是每一个都是有效的。所以我们现在所要做的就是从里面提供的ip,筛选出有效快速稳定的ip。

import requests
import random
import time

http_ip = [
    '64.227.46.7:8080',
    '185.49.31.205:8080',
    '95.66.138.21:8880',
    '109.61.42.223:80',
    ......
]
valid_ips = []  # 用于存储有效的IP
for i in range(10):
    try:
        ip_proxy = random.choice(http_ip)
        proxy_ip = {
            'http': ip_proxy,
            'https': ip_proxy,
        }
        print('使用代理的IP:', proxy_ip)
        response = requests.get("http://httpbin.org/ip", proxies=proxy_ip).text
        print(response)
        print('当前IP有效')
        valid_ips.append(ip_proxy)  # 将有效的IP添加到列表中
        time.sleep(2)
    except Exception as e:
        print(e.args[0])
        print('当前IP无效')
# 将有效的IP写入文件
with open("yxip.txt", "w") as f:
    for ip in valid_ips:
        f.write(ip + "\n")

print(f"已成功将爬取的 {len(valid_ips)} 个有效代理 IP 保存到 yxip.txt 中。")

在这里插入图片描述
在这里插入图片描述

五、完整源码

在校园网下也能正常运行,提取数据。

1.存储到数据库

import requests  
from lxml import etree  
import pymysql  
import time  
import threading  
import random  

# 代理IP列表  
proxy_list = [  
    "http://185.105.102.179:80",  
    "http://185.49.31.205:8080",  
    "http://192.118.169.172:8080",  
    "http://185.17.153.178:8080"  
]  

# 数据库连接  
def create_db_connection():  
    return pymysql.connect(  
        host='localhost',  
        user='root',  
        password='123456',  
        db='douban',  
    )  

def insert_movie_data(ranking, title, rating, number, urls):  
    conn = create_db_connection()  
    try:  
        with conn.cursor() as cursor:  
            query = "INSERT INTO shuju (ranking, title, rating, number, urls) VALUES (%s, %s, %s, %s, %s)"  
            cursor.execute(query, (ranking, title, rating, number, urls))  
            conn.commit()  
    finally:  
        conn.close()  

def scrape_page(page):  
    url = f"https://movie.douban.com/top250?start={page * 25}&filter="  
    
    # 请求头模拟浏览器  
    headers = {  
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0'  
    }  

    for attempt in range(4):  # 最多重试4次  
        proxy = random.choice(proxy_list)  # 随机选择代理  
        try:  
            response = requests.get(url, headers=headers, proxies={"http": proxy}, timeout=10)  
            response.raise_for_status()  # 检查请求是否成功  
            html_str = response.content.decode()  

            # 使用lxml解析HTML  
            tree = etree.HTML(html_str)  
            li_list = tree.xpath('//*[@id="content"]/div/div[1]/ol/li')  

            for li in li_list:  
                try:  
                    ranking = li.xpath("./div/div[1]/em/text()")[0]   
                    title = li.xpath("./div/div[2]/div[1]/a/span[1]/text()")[0]  
                    rating = li.xpath("./div/div[2]/div[2]/div/span[2]/text()")[0]   
                    number = li.xpath(".//div/div[2]/div[2]/div/span[4]/text()")[0]   
                    urls = li.xpath("./div/div[2]/div[1]/a/@href")[0]   

                    insert_movie_data(ranking, title, rating, number, urls)  
                    print(f"排名: {ranking}, 电影: {title}, 评分: {rating}, 评价人数: {number}, 影片主页链接: {urls}")  
                except IndexError as e:  
                    print(f"数据提取错误: {e},可能是由于页面结构变化。")  
            break  # 如果请求成功,退出重试循环  
        except requests.exceptions.RequestException as e:  
            print(f"请求错误: {e},使用代理: {proxy}")  
            time.sleep(5)  # 等待5秒再重试  

if __name__ == "__main__":  
    num_pages = int(input("请输入要爬取的页数: "))  
    
    # 记录开始时间  
    start_time = time.time()  
    
    threads = []  
    
    # 创建并启动线程  
    for page in range(num_pages):  
        thread = threading.Thread(target=scrape_page, args=(page,))  
        threads.append(thread)  
        thread.start()  
        time.sleep(1)  # 每个线程启动之间稍微延迟一下,避免过于频繁  

    # 等待所有线程完成  
    for thread in threads:  
        thread.join()  

    # 记录结束时间  
    end_time = time.time()  
    
    # 计算耗时  
    duration = end_time - start_time  
    print(f"所有数据已成功爬取并保存到数据库,耗时: {duration:.2f} 秒")

在这里插入图片描述
已成功将豆瓣电影 Top 250 的数据提取并保存至数据库 douban。
在这里插入图片描述
以上代码运行以后报错,看一下数据库是否启动,数据库、表、列是否创建错误。

2.存储到JSON文件或Excel表格

如果觉得将数据存储到数据库比较繁琐,也可以选择将数据存储到JSON文件或Excel表格中。

import requests  
from lxml import etree  
import time  
import threading  
import random  
import pandas as pd  
import json  

# 代理IP列表  
proxy_list = [  
    "http://185.105.102.179:80",   
    "http://185.49.31.205:8080",   
    "http://192.118.169.172:8080",   
    "http://185.17.153.178:8080"   
]  

def scrape_page(page, movie_data):  
    url = f"https://movie.douban.com/top250?start={page * 25}&filter="  
    headers = {  
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0'  
    }  

    for attempt in range(4):  
        proxy = random.choice(proxy_list)  
        try:  
            response = requests.get(url, headers=headers, proxies={"http": proxy}, timeout=10)  
            response.raise_for_status()  
            html_str = response.content.decode()  
            tree = etree.HTML(html_str)  
            li_list = tree.xpath('//*[@id="content"]/div/div[1]/ol/li')  

            for li in li_list:  
                try:  
                    ranking = li.xpath("./div/div[1]/em/text()")[0]   
                    title = li.xpath("./div/div[2]/div[1]/a/span[1]/text()")[0]  
                    rating = li.xpath("./div/div[2]/div[2]/div/span[2]/text()")[0]   
                    number = li.xpath(".//div/div[2]/div[2]/div/span[4]/text()")[0].strip('人评价')   
                    urls = li.xpath("./div/div[2]/div[1]/a/@href")[0]   
                    movie_data.append({
                        '排名': ranking,
                        '电影': title,
                        '评分': rating,
                        '评价人数': number,
                        '影片主页链接': urls
                    })  
                except IndexError as e:  
                    print(f"数据提取错误: {e},可能是由于页面结构变化。")  
            break  
        except requests.exceptions.RequestException as e:  
            print(f"请求错误: {e},使用代理: {proxy}")  
            time.sleep(5)  

if __name__ == "__main__":  
    num_pages = int(input("请输入要爬取的页数: "))  
    movie_data = []  
    
    start_time = time.time()  
    
    threads = []  
    for page in range(num_pages):  
        thread = threading.Thread(target=scrape_page, args=(page, movie_data))  
        threads.append(thread)  
        thread.start()  
        time.sleep(1)  

    for thread in threads:  
        thread.join()  

    end_time = time.time()  
    duration = end_time - start_time  
    print(f"所有数据已成功爬取,耗时: {duration:.2f} 秒")

    # 保存到Excel表格
    df = pd.DataFrame(movie_data)
    df.to_excel('D:\\douban_top250.xlsx', index=False)
    print("数据已保存到Excel表格")

    # 保存到JSON文件
    with open('D:\\douban_top250.json', 'w', encoding='utf-8') as f:
        json.dump(movie_data, f, ensure_ascii=False, indent=4)
    print("数据已保存到JSON文件")

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值