概述
高精度算法是一种对于类似a+b problem,a*b problem等的 扩展;为什么这么说呐?是因为这两者有共同的目的:即实现数与数间的四则运算;但是我们都知道,在计算机运算中,是有其限制的——数大小的限制;但是,不可能任何时间都只是去让程序做一个较小范围的运算,故此,有大佬发明了高精度运算这一算法。怎么发明的呐?
在继续看下去之前,我劝你想一想
再继续向下看!!!
加法
试问,加法的核心思想是什么?
有如下这个式子:
它的核心就在于,同位数相加,然后进位,同位数相加,再加上进位值; 换成计算机语言就可以用数组来表达:
c数组存的是结果,a存的是第一个数的值,b存的是第二个数的值,x是进位。
注意,要先将x初始化为0!
大概的步骤如下:
**1.定义数组,字符串;
2.初始化数组为0;
3.输入数字,即正向代入到字符串;
4.反向代入到数组;
5.运算;
6.删除多的0;
7.反向输出结果;**
这就是加法的核心思想;下面就是高精度运算加法的程序:
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{
int a[101], b[101], c[101], i, x, lena, lenb, lenc;
char al[101], bl[101];
memset(a, 0, sizeof(a));//初始化为0
memset(b, 0, sizeof(b));
memset(c, 0, sizeof(c));
cin >> al; cin >> bl;
lena = strlen(al);//取两个数的长度
lenb = strlen(bl);
for (i = 0; i <= lena - 1; i++) a[lena - i] = al[i]-48;
for (i = 0; i <= lenb - 1; i++) b[lenb - i] = bl[i]-48;//翻转带入数组内
lenc = 1; x = 0;//初始化定义
while (lenc <= lena || lenc <= lenb) {
c[lenc] = a[lenc] + b[lenc] + x;//核心思想
x = c[lenc] / 10;//x是进位值,等于原来那个数除以10,不难理解吧,手动模拟一下
c[lenc] %= 10;//都进位了,自然取余
c[lenc] = x;
if (c[lenc] == 0) lenc--;//若高位是0,就去0
for (i = lenc; i >= 1; i--)
cout << c[i];//反向输出,因为数组是反向被带入的
cout << endl;
return 0;
}
减法
减法这个东西啊,和加法能有啥区别呐?
没错,还是那句话,先自己想想!!!
减法和其他程序不同的是:要判断所计算的数值的大小,进行比较;当然,在运算方面也有一些不同;
减法核心程序若此:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define fil(a,b) memset(a,b,sizeof(a))
const int MAXN=10004;
struct None_Negative_Big_Number_Operate {
char s[2][MAXN];
int len[2];
void read() {
scanf("%s%s",s[0]+1,s[1]+1);
len[0]=strlen(s[0]+1),len[1]=strlen(s[1]+1);
}
inline bool cmp() {
if (len[0]<len[1]) return 1;
if (len[0]>len[1]) return 0;
for (int i=len[0];i;--i) {
if (s[0][i]<s[1][i]) return 1;
if (s[0][i]>s[1][i]) return 0;
}
return 0;
}
void minus() {
int a[MAXN],b[MAXN],ans[MAXN];//x:被减数,y:减数
fil(a,0),fil(b,0);
for (int i=1;i<=len[0];++i) a[i]=s[0][len[0]-i+1]-'0';
for (int i=1;i<=len[1];++i) b[i]=s[1][len[1]-i+1]-'0';
bool bg=cmp();
int mxlen=max(len[0],len[1]);
for (int i=1;i<=mxlen;++i) {
int temp;
temp=(!bg)?a[i]-b[i]:b[i]-a[i];
if (temp<0) ans[i]=temp+10,(!bg)?--a[i+1]:--b[i+1];
else ans[i]=temp;
}
while (!ans[mxlen]&&mxlen) --mxlen;
if (!mxlen) {puts("0");return ;}
if (bg) printf("-");
while (mxlen) printf("%d",ans[mxlen--]);
puts("");
}
}bn;
int main() {
bn.read();
bn.minus();
return 0;
}
乘法:
核心思想:
string mul(string &a,string &b)
{
int len = a.length() + b.length();
string c(len,0);
for(int i=0;i<a.length();i++)
{
for(int j=0;j<b.length();j++)
{
c[i+j] += a[i] * b[j];
c[i+j+1] += c[i+j]/10;
c[i+j] %= 10;
}
}
代码:
#include <cstdio>
using namespace std;
int main()
{
int a[240] = {0}, b[240] = {0}, c[480] = {0};
int i, j, ka, kb, k;
char a1[240], b1[240];
gets(a1);
ka = strlen(a1);
gets(b1);
kb = strlen(b1);
k = ka + kb;
for(i = 0; i < ka; i++) a[i] = a1[ka-i-1] - '0';
for(i = 0; i < kb; i++) b[i] = b1[kb-i-1] - '0';
for(i = 0; i < ka; i++)
for(j = 0; j < kb; j++)
{
c[i + j] = c[i + j] + a[i] * b[j];
c[i + j +1] = c[i + j +1] + c[i + j]/10;
c[i + j] = c[i + j] % 10;
}
if(!c[k]) k--;
for(i = k-1; i >= 0; i--) printf("%d", c[i]);
}
好啦,高精度就讲到这里了,有疑问的可以找我,我的qq:1783841479;