高精度
简介
众所周知,在计算机中,每个数据类型都是有存储上限的,那么当数字特别大时应该怎么办呢?这时高精度就产生了。高精度的主要思想就是模拟手算,然后将结果存储到数组中去,相同的,小数也有精度问题,也可以使用相同的思路
存储
这里使用vector
来进行存储,因为这样不需要去管结果有多少位,直接使用push_back()
函数就行了,虽然和数组比起来会慢一些,不过差别也仅仅是常数而已
输入:定义一个字符串,然后将字符串的每位转数字存储起来就行了
string a; vector <int> A;
cin>>a;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');
输出:请注意,输入的时候我是反过来的,这样做是为了添加元素比较方便,那么输出的时候也要注意倒着输出
for (int i = C.size() - 1; i >= 0; i--) printf("%d", C[i]);
高精度加法
上文中已经提到,在进行高精度运算是模拟手算的,那么接下来就来回忆一下,我们是怎么手动做加法的
图为用竖式做加法的示例,我们可以发现主要组成部分有两个加数、结果、还有进位,于是我们的变量就可以呼之欲出了
vector <int> A; vector <int> B; vector <int> C; int t;
然后我们再使用循环遍历(从0开始)来进行计算,循环位数较大的那个加数的每一位,然后加到 t t t 里面就行了
那么 C i C_i Ci 就等于 A i + B i A_i+B_i Ai+Bi 再 m o d 10 mod~10 mod 10,进位 t t t 就等于 ( A i + B i ) / 10 (A_i+B_i)/10 (Ai+Bi)/10
注意在循环完之后,如果 t ≠ 0 t\neq 0 t=0 的话,还要加上一位
代码模板
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
vector<int> add(vector<int>& A,vector<int>& B)
{
vector<int> C;
int t=0;
for(int i=0;i<max(A.size(),B.size());i++)
{
if(i<A.size()) t+=A[i];
if(i<B.size()) t+=B[i];
C.push_back(t%10);
t/=10;
}
if(t) C.push_back(t);
return C;
}
int main()
{
string a,b;
cin>>a;
cin>>b;
vector<int> A;
vector<int> B;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');
for(int i=b.size()-1;i>=0;i--) B.push_back(b[i]-'0');
vector<int> C=add(A,B);
for(int i=C.size()-1;i>=0;i--) cout<<C[i];
return 0;
}
高精度减法
不带负数
首先,先回忆一下我们是怎么用竖式进行减法的
与加法不同,我们在列减法的竖式时会把大数放在上面,小数放在下面,因为减法涉及到借位的问题
所以说在计算机计算的时候,我们要先判断 A A A 是否 ≥ B \geq B ≥B,如果 < B <B <B,为了避免增加代码量我们直接计算 − ( A − B ) -(A-B) −(A−B) 就行了
那么因为数字特别大,所以我们也需要手写一个比较函数,那么我们是怎么比较两个数的呢?
先比较哪个位数大,位数多的大,如果位数一样,那么分别比较每一位
bool cmp(vector<int>& A, vector<int>& B)
{
if (A.size() != B.size())return A.size() > B.size();
for (int i = A.size()-1; i>=0; i--)
{
if (A[i] != B[i]) return A[i] > B[i];
}
return true;
}
类似加法,变量分别为被减数,减数,结果,借位
使用循环遍历(从0开始)被减数的每一位
借位 t t t = A i − ( B i ) − t A_i-(B_i)-t Ai−(Bi)−t,如果说最终结果小于0,就要借一位,将 t + 10 t+10 t+10 最后再 m o d 10 mod~10 mod 10 便是 C i C_i Ci
如果借位了 t = 1 t=1