Java并发容器 & 并发队列

并发容器概览

ConcurrentHashMap : 线程安全的HashMap

CopyOnWriteArrayList: 线程安全的List

BlockingQueue:这是一个接口,表示阻塞队列,非常适合用于作为数据共享的通道

ConcurrentLinkedQueue : 高效的非阻塞并发队列,使用链表实现。可以看做一个线程安全的LinkedList

ConcurrentSkipListMap : 是一个Map,使用跳表的数据结构进行快速查找

一、集合类的迭代历史

1、Vector 和 Hashtable

Vector 和 Hashtable 出现较早,但是并发性能差,主要是内部方法由sychronized修饰,目前使用较少。

(1)Vector

Vector 可以理解为一个线程安全的ArrayList;

使用演示如下,用法和 List 类似:

/**
 *      演示Vector
 */
public class VectorDemo {
    public static void main(String[] args) {
        Vector<String> vector = new Vector<>();
        vector.add("李白");
        System.out.println(vector.get(0));
    }
}
(2)Hashtable

Hashtable 可以理解为一个线程安全的HashMap;

用法演示如下,用法和 HashMap 类似:

/**
 *      演示Hashtable
 */
public class HashtableDemo {
    public static void main(String[] args) {
        Hashtable<String, Object> hashtable = new Hashtable<>();
        hashtable.put("三月","杜甫");
        System.out.println(hashtable.get("三月"));
    }
}

2. ArrayList 和 HashMap 的改造

虽然这两不是线程安全的,但是可以通过改造,使他们变成线程安全的

  • Collections.sychronizedList(new ArrayList< E >())
  • Collections.sychronizedMap(new HashMap< K,V >())

用法演示:

/**
 *      演示Collections.sychronizedList(new ArrayList<E>())
 */
public class SycList {
    public static void main(String[] args) {
        List<Integer> list = Collections.synchronizedList(new ArrayList<>());
        list.add(5);
        System.out.println(list.get(0));
    }
}

Collections.sychronizedList() 方法是如何实现线程安全的?

(1)Collections.sychronizedList() 方法源码

RandomAccess 是随机访问接口,表示这个集合能够跳着被随机访问。SynchronizedRandomAccessList 继承了 SynchronizedList类:

进入SynchronizedList 中,发现他里面方法的实现都是通过sychronized同步代码块实现

总结:通过Collections.sychronizedList 等方式实现将ArrayList、HashMap转为线程安全的方法,并不比上面的Vector、Hashtable高明多少,只是从同步方法 演变成 同步代码块 的方式

3、ConcurrentHashMap 和 CopyOnWriteArrayList

  • 取代上面两种的并发安全实现
  • 绝大多数并发情况下,ConcurrentHashMap 和 CopyOnWriteArrayList的性能都很好
  • CopyOnWriteArrayList 更适合读多写少的场景,如果经常有写操作, Collections.sychronizedList 比 CopyOnWriteArrayList 性能好
  • 无论是读还是写操作,ConcurrentHashMap 都比 Hashtable、Collections.synchronizedMap() 方法的性能好。

二、ConcurrentHashMap

1. Map接口

Map的接口和实现类:

2. HashMap的线程不安全

  • 死循环造成CPU使用率100%

    在多个线程同时扩容的时候,会造成链表的死循环(你指向我,我指向你)

  • 同时put碰撞导致数据丢失

    如果两个数据计算出hash值后算出的对应集合的位置重复,那肯定会丢失1个数据

  • 同时put扩容导致数据丢失

    多个线程同时put,如果多个线程都需要执行扩容操作,那只会保留一个扩容后的数组

3、HashMap 1.7 & 1.8 的结构特点

(1)HashMap 1.7

HashMap是在bucket中储存键对象和值对象,作为Map.Entry。执行put()方法传递键和值时,会先对键调用hashCode()方法,返回的hashCode用于找到bucket位置来储存Entry对象。如果它们的bucket位置相同,‘碰撞’会发生,这时会使用链表的方式一直往下链,这个Entry(包含有键值对的Map.Entry对象)会存储在链表中。俗称拉链法。

下面图中的一个个绿色方格就对应一个个 Entry。

(2)HashMap 1.8

1.8在原来的拉链法的基础上,增加了红黑树结构,即这个某个bucket 位置的 链表结构元素超过8个(并且HashMap总容量大于某个阈值)时,就会将链表转为红黑树结构。

(3)HashMap在并发场景下的特点
  • 非线程安全
  • 迭代时不允许修改内容
  • 只读的并发是安全的
  • 如果一定要使用HashMap在并发环境,那请用Collections.sychronizedMap();

4、ConcurrentHashMap 1.7 & 1.8 结构

(1)ConcurrentHashMap 1.7

由 segment 组成(类似于块结构),每个Segment里面对应一个类似HashMap的数组+链表的数据结构,默认有16个,这个默认值可以在初始化时自己设置,设置好之后就固定了,不允许扩容。每个segment 独立 上ReentrantLock锁,每个segment之间互不影响,提高了并发效率。

(2)ConcurrentHashMap 1.8

舍弃了 segment 结构,采用 node 结构,每一个节点就是一个node,通过 CAS + synchronized 实现并发安全,其整体结构与 HashMap 1.8 的结构类似,也是在遇到hash冲突时采用链表+红黑树来存储Entry,如下所示:

为什么链表的长度超过8要转为红黑树结构?

  • 红黑树的占用空间是链表的两倍,所以在hashCode冲突个数不多时,优先使用链表存储
  • 当链表过长时,为了查找的时候更快,使用红黑树,链表的查找时间复杂度O(n),红黑树的查找时间复杂度O(logn)
  • 之所以选择8作为阈值,是因为hashCode冲突个数达到8的概率极小,hashmap源码的注释有说:依据泊松分布,达到8的概率小于千万分之一。但是为了保证在这种极端情况出现时,依然能有较高的查询效率,就转成红黑树结构。

5. ConcurrentHashMap 1.8 的 get/put() 方法分析

(1) put() 方法

put() 方法中直接调用 putVal() 方法,下面看一下 putVal() 源码:

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    //这里和hashmap不一样,hashmap允许一个元素的key为null,但是这里就不允许了
    // 如果这个槽点没有值
    if (key == null || value == null) throw new NullPointerException();
    //计算出自己的hash值
    int hash = spread(key.hashCode());
    int binCount = 0;
    //在这个for循环中,完成对 值的插入工作
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        //判断tab是否没有被初始化,或长度等于0,他就进行初始化
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        //如果他已经被初始化,且这个位置是空的,那就直接放入赋值
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            //CAS操作
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        //判断当前的Hash值是不是MOVED
        //MOVED代表一种特殊的节点,一种转移节点,说明这个槽点正在扩容
        else if ((fh = f.hash) == MOVED)
            //帮助进行扩容和转移工作
            tab = helpTransfer(tab, f);
        else {
            //如果这个槽点有值
            V oldVal = null;
            //保证线程安全
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {
                        binCount = 1;
                        //进行链表操作,根据当前hash值,找到这个hash该放的对应链表位置
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            //判断当前存在不存在这个hash对应的key
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                //把原来的oldVal赋成新值,并在后面返回oldVal
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            //到了这个就说明,这个是一个新的
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                //就在链表的最后创建一个新的节点
                                //并把值初始化赋上
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    //判断他是否是一个红黑树
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        //putTreeVal()把值放到红黑树中
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                              value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            //走到这,代表已经完成添加操作了
            if (binCount != 0) {
                //判断是否要将链表转成红黑树
                //TREEIFY_THRESHOLD默认值为8,代表链表节点最少为8个才会尝试转成红黑树
                if (binCount >= TREEIFY_THRESHOLD)
                    //treeifyBin()转换红黑树方法
                    //这里方法会要求数组的长度要大于默认的64;
                    //且链表节点长度要大于等于8个节点才会转红黑树
                    treeifyBin(tab, i);
                if (oldVal != null)
                    //最后这里就是上面说的返回oldVal值
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}

结合 put() 方法的源码,可以知道 put 的大致工作流程

  • 判断key value不为空
  • 计算hash值
  • 根据对应位置节点的类型,来赋值:①直接存储;②helpTransfer(扩容时的转移);③增长链表;④给红黑树增加节点检查,满足阈值就“红黑树”化
  • 返回oldValue
(1) get() 方法

get() 方法源码:

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    //获取到这个key的hash值,并用h来表示
    int h = spread(key.hashCode());
    //判断当前的这个数组长度不能等于null,且长度大于0,否则就直接返回null
    //代表这个map都没被建立初始化完毕
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        //这个key对应的hash赋值并和这个槽点的hash值作比较
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                //就返回val,说明找到了
                return e.val;
        }
        //如果为负数,说明他是一个红黑树节点或者转移节点
        else if (eh < 0)
            //那就用find()方法去找到这个红黑树对应的位置
            return (p = e.find(h, key)) != null ? p.val : null;
        //到了这里就说明,这个节点不是数组,又不是红黑树
        //那他这里就是一个链表数据结构
        //那就用while循环遍历这个链表
        while ((e = e.next) != null) {
            //找到对应的值
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                //返回
                return e.val;
        }
    }
    return null;
}

结合 get() 方法的源码,可以知道其大致工作流程:

  • 计算hash值

  • 找到对应的位置,根据实际情况进行:

    • 直接取值
    • 红黑树里找值
    • 遍历链表取值
  • 返回找到的结果

6. ConcurrentHashMap 1.7结构和1.8结构的对比

  • 数据结构不同
    • 1.7采用Segment块的结构,默认16个块,也就是16个线程数并发
    • 1.8采用和hashmap 类似的数组+链表+红黑树结构,不限制线程数
    • 并发度的改变:从 16个(因为1.7默认16个segment,不过可以自己设置)------>不限(1.8不限)
  • Hash碰撞
    • 1.7采用拉链法,链表的形式往下
    • 1.8采用拉链法,链表形式往下,然后在根据链表长度,和Map总容量超过阈值时会转成红黑树
  • 保证并发安全
    • 1.7采用分段锁,通过Segment块保证线程安全,Segment块继承ReentrantLock
    • 1.8采用unsafe工具类的CAS操作 + sychronized修饰符
  • 查询复杂度
    • 1.7链表查询复杂度为:O(n)
    • 1.8当hash冲突的Entry个数超过8时,会转成红黑树,红黑树的时间复杂度为O(logn)

7. ConcurrentHashMap 错误的使用案例

(1)错误使用

代码演示:

/**
 *      ConcurrentHashMap 组合操作并不保证线程安全
 */
public class OptionsNotSafe implements Runnable {
    private static ConcurrentHashMap<String,Integer> scores = new ConcurrentHashMap<>();

    public static void main(String[] args) throws InterruptedException {
        scores.put("范仲淹",0);
        OptionsNotSafe r = new OptionsNotSafe();
        Thread thread1 = new Thread(r);
        Thread thread2 = new Thread(r);
        thread1.start();
        thread2.start();
        thread1.join();
        thread2.join();

        System.out.println(scores);
    }

    @Override
    public void run() {
        for (int i = 0; i < 1000; i++) {
            Integer score = scores.get("范仲淹");
            Integer newScore = score+1;
            scores.put("范仲淹",newScore);
        }
    }

}

乍一看,以为 ConcurrentHashMap 并发不安全,其实 ConcurrentHashMap 线程安全体现在每一个单独的操作中,他只能保证一个get()或一个put()操作是具有线程安全的,但不能保证多个操作的组合是线程安全的。

(1)正确使用:

对于上面的修改范仲淹的分数操作,其实可以使用 replace() 方法实现线程安全,对 run()方法修改成如下:

    @Override
    public void run() {
        for (int i = 0; i < 1000; i++) {
                while (true) {
                    Integer score = scores.get("范仲淹");
                    Integer newScore = score + 1;
                    // 使用 ConcurrentHashMap 提供的方法replace,通过返回值的boolean来判断是否修改成功,不然就一直尝试修改,replace是基于 CAS的原理
                    boolean flag = scores.replace("范仲淹", score, newScore);
                    // System.out.println(flag);
                    if (flag){
                    	break;
                    }else {
                        System.out.println(score+":"+flag);
                    }
                }
        }
    }

四、CopyOnWriteArrayList

1. 诞生原因

  • 代替Vector和Collections.synchronizedList(),就和ConcurrentHashMap代替Collections.synchronizedMap()的原因一样
  • Vector和SynchronizedList的锁的粒度太大,并发效率相对比较低,并且迭代(遍历)时无法编辑
  • Copy-On-Write并发容器还包括CopyOnWriteArraySet,用来替代同步Set

2、使用场景

读多写少,且要求读操作很快,写操作可以慢一点的场景,比如:

  • 网站的黑名单、白名单等,读操作比较多,写操作比较少,而且写的慢也没关系;
  • 监听器,不轻易增加或减少,大部分时间都是监听某事件并进行通知或报警

3、读写规则

CopyOnWriteArrayList 读取是完全不用加锁的,并且更厉害的是写入也不会阻塞读取操作。只有写入和写入之间需要进行同步等待,即只有写写互斥,读写不互斥

(1)ArrayList不支持在迭代过程中修改数据:

代码演示:

public class CopyOnWriteArrayListDemo1 {
    public static void main(String[] args) {
        ArrayList<String> list = new ArrayList<>();
        list.add("1");
        list.add("2");
        list.add("3");
        list.add("4");
        list.add("5");

        Iterator<String> iterator = list.iterator();

        while (iterator.hasNext()){
            System.out.println("list is" + list);
            String next = iterator.next();
            System.out.println(next);

            if (next.equals("3")){
                list.remove("5");
            }

            if (next.equals("3")){
                list.add("3 found");
            }
        }
    }
}

在对list迭代过程中,修改list数据,会报错,说明ArrayList不允许在迭代时修改。

(2) CopyOnWriteArrayList支持在迭代过程中修改数据:
public class CopyOnWriteArrayListDemo2 {
    public static void main(String[] args) {
        CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
        list.add("1");
        list.add("2");
        list.add("3");
        list.add("4");
        list.add("5");

        Iterator<String> iterator = list.iterator();

        while (iterator.hasNext()){
            System.out.println(list);
            String next = iterator.next();
            System.out.println(next);

            if (next.equals("3")){
                list.remove("5");
            }

            if (next.equals("4")){
                list.add("4 found");
            }
        }
    }

}

CopyOnWriteArrayList 在迭代过程中,修改数据,并没有报错,说明CopyOnWriteArrayList允许在迭代时修改。

4、实现原理

(1) CopyOnWrite含义

在写操作时,在原来的数据A基础上复制一份B,然后把B放在一块新的内存中,通过对B进行修改写入,之后再把指向原来A内存地址的指针,指向新复制出来的B所在的内存地址,而原来的内存由于没有指针绑定,便会被回收。

有三个特点:

  • 创建新副本,读写分离

    对整个原来数据复制一份副本,把修改的内容写入新的副本中,最后再替换掉原来的数据

  • 不可变原理

    对于原来的数据,是不可变的,只是会被回收

  • 迭代遍历的时候

    在遍历的过程中修改了数据,不是直接修改原来的数据,而是修改副本数据,所以迭代器中的数据还是旧数据

代码演示:

/**
 * 描述:     对比两个迭代器
 */
public class CopyOnWriteArrayListDemo2 {

    public static void main(String[] args) throws InterruptedException {
        CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>(new Integer[]{1, 2, 3});

        System.out.println(list);

        Iterator<Integer> itr1 = list.iterator();

        list.remove(2);
        Thread.sleep(1000);
        System.out.println(list);

        Iterator<Integer> itr2 = list.iterator();

        itr1.forEachRemaining(System.out::println);
        itr2.forEachRemaining(System.out::println);

    }
}

CopyOnWriteArrayList在迭代时,迭代器中拿到什么数据,取决于他的创建时间,不取决于他执行迭代循环的时间

5、缺点

  • 数据一致性问题:CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。所以如果你希望写入的数据,马上能读到,请不要使用CopyOnWrite容器
  • 内存占用问题:因为CopyOnWrite的写是复制机制,所以在进行写操作的时候,内存里会同时驻扎两个对象的内存,内存消耗大

6、源码分析

(1)使用了 ReentrantLock()

(3) add()方法

public boolean add(E e) {
    final ReentrantLock lock = this.lock;
    //上锁
    lock.lock();
    try {
        //拿到原来的数组
        Object[] elements = getArray();
        //获取原来的数组长度
        int len = elements.length;
        //复制一份原来的数组内容
        Object[] newElements = Arrays.copyOf(elements, len + 1);
        //把要添加的元素添加到新的数组中的最后一个位置
        newElements[len] = e;
        //将 array 存储的数组引用,改成这个新创建的数组引用
        setArray(newElements);
        //返回添加成功boolean
        return true;
    } finally {
        //解锁
        lock.unlock();
    }
}
(3) get()方法

get() 方法中没有加锁:

五、并发队列

1、为什么要使用队列

  • 用队列可以存储数据、可以在线程间传递数据、交换数据等。
  • 队列如果是线程安全的,多线程操作时就可以直接使用队列传数据而不用考虑线程安全问题

2. 队列关系图

4、什么是阻塞队列

  • 阻塞队列是具有阻塞功能的队列,所以它首先是一个队列,其次是具有阻塞功能
  • 通常,阻塞队列的一端是给生产者放数据用,另一端给消费者拿数据用。阻塞队列是线程安全的,所以生产者和消费者都可以是多线程的
  • 阻塞队列的分为有界和无界,有界是指队列存储容量有限,无界队列是指存储容量无限大,如 LinkedBlockingQueue 的存储容量为 Integer.MAX_VALUE,约为2的31次方,可近似认为是无界队列。
  • 阻塞队列是线程池的重要组成部分,比如 Executors.newCachedThreadPool() 就是使用的 SynchonizedQueue,这是一个容量为0的队列。

image-20210614200904916

下面看看几个常用的队列:

六、ArrayBlockingQueue阻塞有界队列

1. 特点

  • 一个对象数组+一把锁+两个条件(非空和非满两个条件)
  • 入队与出队都用同一把锁
  • 在只有入队高并发或出队高并发的情况下,因为操作数组,且不需要扩容,性能很高
  • 采用了数组,必须指定大小,即容量有限

2、主要方法

(1)put & take

put & take 是最有特色的两个带有阻塞功能的方法

  • take() 方法:获取并移除队列的头结点元素,一旦执行take的时候,如果队列里无数据,则阻塞,直到队列里有数据
  • put() 方法: 插入元素。但是如果队列已满,那么就无法继续插入,并阻塞,直到队列里有了空闲空间
(2)add、remove & element
  • add:增加一个元素,满了报错
  • remove:移除一个元素,空了报错
  • element:获取头结点元素,并删除,空了报错

上面这三个方法,如果遇到队列满了或者空了,就会抛异常。

(3)offer 、poll & peek
  • offer:增加一个元素,满了则放入失败,并返回false
  • poll:取出一个元素,并从队列中删除该元素,空了返回null
  • peek:取出一个元素,不删除该元素,空了返回null

3. 使用案例

案例:有10个面试者,一共只有1个面试官,大厅里有3个位子休息,每个人面试时间1s。代码如下:

/**
  *  有10个面试者,一共只有1个面试官,大厅里有3个位子休息,每个人面试时间1s
 */
public class ArrayBlockingQueueDemo {
    //主函数
    public static void main(String[] args) throws InterruptedException {
        ArrayBlockingQueue<String> queue = new ArrayBlockingQueue<String>(3);//3个位置
        Interviewer r1 = new Interviewer(queue);
        Consumer r2 = new Consumer(queue);

        Thread interviewer = new Thread(r1);
        Thread consumer = new Thread(r2);

        interviewer.start();
        consumer.start();
    }

}

//面试官类
class Interviewer implements Runnable {
    BlockingQueue<String> queue;

    public Interviewer(BlockingQueue<String> queue) {
        this.queue = queue;
    }

    @Override
    public void run() {
        System.out.println("10个候选人都来了");
        for (int i = 0; i < 10; i++) {
            String candidate = "Candidate:" + i;
            try {
                queue.put(candidate);
                System.out.println("安排好了!" + candidate);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        try {
            queue.put("stop");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

//面试者类
class Consumer implements Runnable {
    BlockingQueue<String> queue;

    public Consumer(BlockingQueue<String> queue) {
        this.queue = queue;
    }

    @Override
    public void run() {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        String msg;
        try {
            while (!"stop".equals(msg = queue.take())) {
                System.out.println(msg + ",轮到了");

            }
            System.out.println("面试结束");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

队列容量为3,所以在放了三个元素之后就会阻塞,消费者每取出一个元素,生产者才能继续放进去一个元素,达到一种平衡。

4. put() 方法源码分析

七、LinkedBlockingQueue阻塞无界队列

1. 特点

  • 一个单向链表+两把锁+两个条件(非空和非满两个条件)
  • 两把锁,一把用于入队,一把用于出队,有效的避免了入队与出队时使用一把锁带来的竞争。
  • 在入队与出队都高并发的情况下,性能比ArrayBlockingQueue高很多
  • 采用了链表结构,最大容量为整数最大值(Integer.MAX_VALUE),可看做容量无限

2. 源码

(1)他有take和put锁两把锁

(2)put() 方法源码
public void put(E e) throws InterruptedException {
    //判断传入的是否为空
    if (e == null) throw new NullPointerException();
    int c = -1;
    //将传入的内容进行包装
    Node<E> node = new Node<E>(e);
    //获取put锁
    final ReentrantLock putLock = this.putLock;
    //获取当前队列元素数
    final AtomicInteger count = this.count;
    //加锁
    putLock.lockInterruptibly();
    try {
        //如果当前队列数等于最大容量
        while (count.get() == capacity) {
            //阻塞
            notFull.await();
        }
        //放入队列
        enqueue(node);
        //c为自增后的旧值
        c = count.getAndIncrement();
        //c+1就是当前的元素数
        //代表当前元素数小于最大容量,还有空间
        if (c + 1 < capacity)
            //唤醒一个线程,让之前等待的进入工作状态
            notFull.signal();
    } finally {
        //解锁
        putLock.unlock();
    }
    if (c == 0)
        signalNotEmpty();
}

八、PriorityBlockingQueue阻塞优先级队列

put操作时永远不会阻塞,因为 PriorityBlockingQueue 也是无界队列;但是take操作时,如果队列是空的,就有可能会阻塞

1. 特点

  • 支持优先级:可以自己设置排序规则,使队列中的元素可以按照我们设置的顺序取出来,而不是先进先出
  • 使用 ReentrantLock
  • 无界队列,无界的原理是他可以在容量不够用时扩容
  • 是 PriorityQueue 的线程安全版本

九、SychronousQueue阻塞直接传递队列

  • 无空间容量,容量为0
  • 无锁
  • 只是在线程间直接交换,不持有元素,所以效率很高,是一个极好的直接传递的并发数据结构
  • SynchronousQueue没有peek等函数,因为peek的含义是取出头结点,但是SynchronousQueue的容量是0,所以连头结点都没有,也就没有peek方法。同理,没有iterate相关方法
  • SynchronousQueue 是线程池 Executors.newCachedThreadPool() 使用的阻塞队列

十、DelayQueue阻塞延时队列

DelayQueue也是一个无界队列,所以在put() 时,不会被阻塞.

  • 延迟队列,根据延迟时间排序
  • 队列元素需要实现Delayed接口,规定排序规则

十一、ConcurrentLinkedQueue非阻塞并发队列

  • 并发包中的非阻塞队列只有ConcurrentLinkedQueue这一种。
  • 顾名思义ConcurrentLinkedQueue是使用链表作为其数据结构的
  • 使用CAS非阻塞算法来实现线程安全(不具备阻塞功能),适合用在对性能要求较高的并发场景,不常用

看源码的offer方法的CAS思想,内有p.casNext方法,使用了unsafe中的UNSAFE.compareAndSwapObject() 方法来实现CAS操作的原子性保证

p.casNext() 使用了unsafe工具包来实现CAS操作的原子性保证, compareAndSwapObject 是一个native 方法

十二、如何选择适合自己的队列??

可以从边界空间吞吐量三个方面来选择合适自己的队列,下面列举了几个队列的对比:

点我扫码关注微信公众号

文章来源:Java并发容器 & 并发队列


个人微信:CaiBaoDeCai

微信公众号名称:Java知者

微信公众号 ID: JavaZhiZhe

谢谢关注!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值