我好像记得这道题是怎么写的,也不知道是福是祸
1. 收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间
2.局部最优:收集每天的正利润,全局最优:求得最大利润。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int res = 0;
for(int i = prices.size()-1; i >0; i--){
int gap = prices[i] - prices[i-1];
if (gap > 0){
res += gap;
}
}
return res;
}
};
这道题的精华不在于每次跳跃多少步,而是设立一个覆盖范围
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
注意:
1.遍历要在cover之内,这保证了如果中间出现了断裂,就不会往后循环了;
2.每次遍历都可以更新cover的值;
3.当cover的值超过了nums.size()-1的时候,就可以返回true了
class Solution {
public:
bool canJump(vector<int>& nums) {
int cover = 0;
for(int i = 0; i <= cover; i++){
if (i + nums[i] >= cover){ // 这里也可以写成cover = max(i + nums[i], cover);
cover = i + nums[i];
}
if (cover >= nums.size() - 1){
return true;
}
}
return false;
}
};
从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖,以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点;
1.如果 cur 不是终点,步数加1,继续走
2.如果 cur 是终点,步数不加1
class Solution {
public:
int jump(vector<int>& nums) {
int cur = 0; // 当前覆盖的最远距离下标
int next = 0; // 下一步覆盖的最远距离下标
int res = 0;
if (nums.size() == 1) return 0;
for(int i = 0; i < nums.size(); i++){
next = max(i + nums[i], next);
if (i == cur){
cur = next;
res++;
if (next >= nums.size()-1){
break;
}
}
}
return res;
}
};
// 版本二
class Solution {
public:
int jump(vector<int>& nums) {
int curDistance = 0; // 当前覆盖的最远距离下标
int ans = 0; // 记录走的最大步数
int nextDistance = 0; // 下一步覆盖的最远距离下标
for (int i = 0; i < nums.size() - 1; i++) { // 这里是小于nums.size() - 1,关键所在
nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
if (i == curDistance) { // 遇到当前覆盖的最远距离下标
curDistance = nextDistance; // 更新当前覆盖的最远距离下标
ans++;
}
}
return ans;
}
};