代码随想录算法训练营第17期第32天 | 122. 买卖股票的最佳时机 II、55. 跳跃游戏、45. 跳跃游戏 II

122. 买卖股票的最佳时机 II

我好像记得这道题是怎么写的,也不知道是福是祸

1. 收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间

2.局部最优:收集每天的正利润,全局最优:求得最大利润

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int res = 0;
        for(int i = prices.size()-1; i >0; i--){
            int gap = prices[i] - prices[i-1];
            if (gap > 0){
                res += gap;
            }
        }
        return res;
    }
};

55. 跳跃游戏

这道题的精华不在于每次跳跃多少步,而是设立一个覆盖范围

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

注意:

1.遍历要在cover之内,这保证了如果中间出现了断裂,就不会往后循环了;

2.每次遍历都可以更新cover的值;

3.当cover的值超过了nums.size()-1的时候,就可以返回true了

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        for(int i = 0; i <= cover; i++){
            if (i + nums[i] >= cover){ // 这里也可以写成cover = max(i + nums[i], cover);
                cover = i + nums[i];
            }
            if (cover >= nums.size() - 1){
                return true;
            }
        }
        return false;
    }
};

45. 跳跃游戏 II

从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!

这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖,以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点;

1.如果 cur 不是终点,步数加1,继续走

2.如果 cur 是终点,步数不加1

class Solution {
public:
    int jump(vector<int>& nums) {
        int cur = 0; // 当前覆盖的最远距离下标
        int next = 0; // 下一步覆盖的最远距离下标
        int res = 0;
        if (nums.size() == 1) return 0;
        for(int i = 0; i < nums.size(); i++){
            next = max(i + nums[i], next);
            if (i == cur){
                cur = next;
                res++;
                if (next >= nums.size()-1){
                    break;
            }
            }            
        }
        return res;
    }
};

// 版本二
class Solution {
public:
    int jump(vector<int>& nums) {
        int curDistance = 0;    // 当前覆盖的最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖的最远距离下标
        for (int i = 0; i < nums.size() - 1; i++) { // 这里是小于nums.size() - 1,关键所在
            nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
            if (i == curDistance) {                 // 遇到当前覆盖的最远距离下标
                curDistance = nextDistance;         // 更新当前覆盖的最远距离下标
                ans++;
            }
        }
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值