yolov8/9关键点检测模型检测俯卧撑动作并计数【源码免费+数据集+python环境+GUI系统】

yolov89模型检测俯卧撑动作并计数【源码免费+数据集+python环境+GUI系统】

yolov8/9关键点检测模型检测俯卧撑动作并计数【源码免费+数据集+python环境+GUI系统】

YOLO算法原理

YOLO(You Only Look Once)关键点检测的算法原理主要基于YOLO目标检测算法进行改进,其核心思想是将关键点检测问题转化为一个回归问题。

1. 网络结构

基础网络:YOLO关键点检测算法通常采用卷积神经网络(CNN)作为基础网络,用于提取图像的特征。

关键点回归分支:在网络的最后一层添加关键点的回归分支,用于预测关键点的位置。这一分支通过训练学习,能够输出每个目标的关键点坐标。

2. 数据标注

在训练阶段,需要对每个目标标注其关键点的位置。这通常通过人工标注的方式完成,将关键点的坐标标注在图像上。这些标注数据将作为训练网络的输入,帮助网络学习如何预测关键点位置。

3. 损失函数

YOLO关键点检测算法通常采用平方差损失函数来度量预测值与真实值之间的差距。损失函数包括目标位置的损失和关键点位置的损失。通过最小化损失函数,可以优化网络参数,提高关键点检测的准确率。

4. 预测过程

在测试阶段,通过网络的前向传播即可得到目标的关键点位置。这一过程是实时的,且具有较高的检测速度。

5. 非极大值抑制(NMS)

在得到多个预测结果后,YOLO关键点检测算法通常采用非极大值抑制(NMS)来抑制重叠的检测结果,只保留置信度最高的检测结果。这有助于减少误检和漏检的情况。

7. 优缺点

优点:

实时性较好:通过一次前向传播即可实现目标的检测和关键点的预测。

准确率较高:相对于传统方法,YOLO关键点检测算法在预测关键点位置时具有较高的准确率。

缺点:

对小目标的检测效果不佳:由于小目标的关键点难以精确定位,因此容易出现漏检情况。

对遮挡目标的检测效果不佳:遮挡会对关键点的检测造成困难,导致定位不准确。

代码示例与操作步骤

设置训练、测试、推理的参数,进行编写代码:

训练代码:

分别运行对应的代码可以进行训练、测试、单张图片推理。

    设计对应的GUI界面如下:

安装使用说明

确保代码所在的路径不能出现中文!!!!!!!

确保代码所在的路径不能出现中文!!!!!!!

确保代码所在的路径不能出现中文!!!!!!!

为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。

运行该脚本可以直接执行GUI代码,进入上述界面。不需要再次配置python的环境。

准备俯卧撑动作视频:

联系方式

我们非常乐意根据您的特定需求提供高质量的定制化开发服务。为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信联系我哈!!!

基于YOLOv9实现司机人脸检测及人脸状态(闭眼、打哈欠)识别检测系统python源码+详细运行教程+训 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
<think>好的,用户想了解YOLO算法在俯卧撑检测计数中的应用或实现。我需要先回顾YOLO的基本原理,然后结合姿态估计和目标检测的技术来分析如何应用于动作识别,特别是俯卧撑。 首先,YOLO(You Only Look Once)是一种实时目标检测算法,它将图像划分为网格,每个网格预测边界框和类别概率。YOLO的快速处理速度使其适合实时应用,比如视频中的动作检测俯卧撑检测计数需要识别人的姿态变化,尤其是手臂弯曲和身体升降。单纯的YOLO可能只能检测到人体位置,但无法捕捉动作细节。因此,可能需要结合姿态估计模型,如YOLO结合OpenPose,或者使用YOLO的变种如YOLO-Pose,这类模型可以同时检测人体关键点。 接下来,实现步骤可能包括:使用YOLO检测视频中的每个人体,然后用关键点检测模型跟踪手肘、肩膀、髋关节等关键点的位置变化。通过计算这些关键点的角度或相对位置变化来判断是否完成了一个俯卧撑。例如,当手肘角度小于一定阈值时,视为身体下降,角度恢复时视为上升,完成一次计数。 此外,数据集的准备也很重要。可能需要收集或标注包含各种俯卧撑姿态的数据集,训练模型识别关键点。另外,需要考虑光照、遮挡、不同人体体型等因素对检测的影响。 关于计数逻辑,可以采用状态机的方法。比如,初始状态为身体上升,当检测到身体下降达到最低点时,状态转为下降;当再次上升时,增加计数。这样可以避免重复计数。 可能遇到的问题包括:快速运动导致的关键点检测不准确,遮挡问题,以及不同人做俯卧撑的速度差异。解决方法可能包括使用更高速率的摄像头,优化关键点检测算法,或者加入时间序列分析(如LSTM)来平滑检测结果。 最后,用户可能需要具体的代码示例或实现步骤。例如,使用预训练的YOLO模型检测人体,再使用姿态估计模型获取关键点,然后根据关键点角度变化实现计数。需要确保代码中的依赖库正确安装,比如PyTorch、OpenCV,以及相应的YOLO和姿态估计模型。 还需要考虑性能优化,比如模型在移动设备上的部署,或者使用轻量级模型YOLOv5s来保证实时性。同时,引用相关文献或已有的开源项目,比如Ultralytics的YOLOv5实现,或者MMPose等姿态估计库,来增强回答的可靠性。 总结起来,回答的结构应该是先介绍YOLO的基本应用,然后结合姿态估计说明俯卧撑检测的实现步骤,接着讨论计数逻辑和可能的技术挑战,最后提供代码示例和相关引用。</think>### YOLO算法在俯卧撑检测计数中的应用 #### 1. YOLO算法的基础原理 YOLO(You Only Look Once)是一种单阶段目标检测算法,通过将图像划分为$S \times S$网格直接预测边界框和类别概率,实现实时检测[^1]。其核心公式可表示为: $$P_{\text{obj}} \cdot IOU_{\text{pred}}^{\text{truth}} \cdot \left( C_{\text{class}} + \lambda_{\text{coord}} \sum (x,y,w,h) \right)$$ 其中$P_{\text{obj}}$为存在目标的概率,$IOU_{\text{pred}}^{\text{truth}}$为预测框与真实框的交比,$\lambda_{\text{coord}}$为坐标权重系数。 #### 2. 俯卧撑检测的实现步骤 **(1) 人体目标检测** 使用YOLOv5/v7等模型检测视频帧中的人体,输出人体边界框坐标。代码示例如下: ```python import cv2 from yolov5 import YOLOv5 model = YOLOv5("yolov5s.pt") frame = cv2.imread("pushup.jpg") results = model(frame) boxes = results.xyxy[0] # 获取边界框坐标 ``` **(2) 关键点检测** 结合YOLO-Pose或OpenPose,提取人体17个关键点(如手腕、手肘、肩膀、髋部): ```python # 使用YOLO-Pose获取关键点 keypoints = results.pose_xy[0] # 形状为[N,17,2] ``` **(3) 动作判定** 计算手肘关节角度: $$θ = \arccos\left( \frac{\vec{BA} \cdot \vec{BC}}{|\vec{BA}| \cdot |\vec{BC}|} \right)$$ 其中$B$为手肘,$A$为手腕,$C$为肩膀。当$θ < 90^\circ$时判定为身体下降阶段[^2]。 #### 3. 俯卧撑计数逻辑 采用状态机控制计数流程: ```python count = 0 state = "up" if theta < 90 and state == "up": state = "down" elif theta > 160 and state == "down": count += 1 state = "up" ``` #### 4. 技术挑战与优化 - **遮挡问题**:使用ByteTrack多目标跟踪算法关联跨帧检测结果[^3] - **速度适应**:引入时间卷积网络(TCN)分析连续帧动作模式 - **模型轻量化**:采用YOLOv5s模型(7.2M参数)实现30FPS实时检测 #### 5. 完整实现示例 ```python import cv2 from yolov5 import YOLOv5 from angle_calculator import calculate_elbow_angle model = YOLOv5("yolov5s_pose.pt") cap = cv2.VideoCapture("pushups.mp4") count = 0 state = "up" while cap.isOpened(): ret, frame = cap.read() if not ret: break # 检测关键点提取 results = model(frame) keypoints = results.pose_xy[0] # 计算右手肘角度 right_elbow_angle = calculate_elbow_angle(keypoints[0][3], keypoints[0][4], keypoints[0][5]) # 状态更新 if right_elbow_angle < 90 and state == "up": state = "down" elif right_elbow_angle > 160 and state == "down": count +=1 state = "up" # 显示结果 cv2.putText(frame, f"Count: {count}", (10,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0),2) cv2.imshow("Pushup Counter", frame) if cv2.waitKey(1) == 27: break cap.release() cv2.destroyAllWindows() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霍夫曼vx_helloworld7352

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值