yolo系列算法开发
文章平均质量分 85
yolo系列算法开发
霍夫曼vx_helloworld7352
一败接一败,败成了24岁的孟烦le,id号:helloworld7352
展开
-
yolov8/9/10/11模型在食品图像商标检测中的应用【代码+数据集+python环境+GUI系统】
模型的应用【代码数据集+python环境+GUI系统】背景意义准确的食品商标检测能确保消费者购买到的食品来源可靠、信息真实。消费者可以通过商标了解食品的生产厂家、生产日期、成分等关键信息,从而判断食品的安全性和质量。如果商标信息不准确或被篡改,可能导致消费者购买到假冒伪劣或不安全的食品,对健康造成威胁。因此,基于计算机视觉的高效商标检测技术是保障消费者食品安全的重要手段。监管部门需要对市场上的食品进行严格监管,确保食品符合相关的安全标准和法规。原创 2024-10-04 21:18:54 · 810 阅读 · 0 评论 -
yolov8/9/10模型在垃圾分类检测中的应用【代码+数据集+python环境+GUI系统】
模型在垃圾分类检测中的应用【代码数据集+python环境+GUI系统】背景意义随着计算机视觉技术和深度学习算法的快速发展,图像识别、对象检测、图像分割等技术在各个领域得到了广泛应用。这些技术的进步为垃圾分类的自动化和智能化提供了强有力的技术支持。随着城市化进程的加快和人口的增长,垃圾产生量急剧增加,传统的人工垃圾分类方式已经难以满足高效、准确的处理需求。因此,基于计算机视觉的垃圾分类技术应运而生,成为解决这一问题的有效途径。原创 2024-09-29 20:44:13 · 1132 阅读 · 0 评论 -
基于yolo11的工地钢筋检测计数训练、应用系统【代码+数据集+python环境+训练/应用GUI系统】
真正让YOLO11脱颖而出的是其令人印象深刻的速度、准确性和效率的结合,使其成为Ultralytics迄今为止创造的最强大的型号之一。通过改进的设计,YOLO11可以更好地提取特征,这是从图像中识别重要模式和细节的过程,即使在具有挑战性的场景中,也可以更准确地捕捉复杂的方面。值得注意的是,YOLO11m在COCO数据集上获得了更高的平均精度(mAP)分数,同时使用的参数比YOLOv8m少22%,使其在不牺牲性能的情况下计算更轻。确保代码所在的路径不能出现中文!确保代码所在的路径不能出现中文!原创 2024-10-01 14:52:54 · 1011 阅读 · 0 评论 -
yolov8/9/10模型在仪表盘、指针表检测中的应用【代码+数据集+python环境+训练/应用GUI系统】
可视化训练系统可视化应用系统模型在检测中的应用【代码数据集+python环境训练应用GUI系统】背景意义随着科学技术的快速发展,机器视觉以及人工智能等技术逐渐从理论走向实践,并在各个领域得到广泛应用。机器视觉检测系统已经成为产品计算机集成制造、质量控制技术的重要基础之一。在汽车制造等行业中,仪表盘作为驾驶员与车辆信息传递的“桥梁”,其准确性和稳定性至关重要。然而,传统的仪表盘检测方式主要依赖人工,存在时间长、效率低、可靠性差等问题。原创 2024-09-30 22:39:03 · 829 阅读 · 0 评论 -
yolov8/9/10/11模型在中医舌苔分类识别中的应用【代码+数据集+python环境+GUI系统】
传统中医的舌诊主要依赖于医生的肉眼观察,仅仅通过这种人工诊断不但需要消耗大量人力,而且诊断的结果往往受医生经验和主观判断影响,甚至受到周围客观环境的影响(如:光照、温度等)[1],通过10位中医专家对两百多例患者进行舌象诊断,发现仅仅有9例相同,为了减少主观判断和客观环境的影响,利用现代计算机技术结合传统中医的理论和中医专家的经验,使中医的舌诊客观化、数字化成为了目前十分热门研究方向。为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。原创 2024-10-03 23:56:24 · 1592 阅读 · 0 评论 -
yolov11模型在bdd100k数据集上的应用【代码+数据集+python环境+训练/应用GUI系统】
更精准、更少参数:随着模型设计的进步,YOLO11m 在 COCO 数据集上的平均精确度(mAP)更高,同时使用了比 YOLOv8m 少 22% 的参数,在不牺牲精度的情况下提高了计算效率;通过改进的设计,YOLO11可以更好地提取特征,这是从图像中识别重要模式和细节的过程,即使在具有挑战性的场景中,也可以更准确地捕捉复杂的方面。值得注意的是,YOLO11m在COCO数据集上获得了更高的平均精度(mAP)分数,同时使用的参数比YOLOv8m少22%,使其在不牺牲性能的情况下计算更轻。原创 2024-10-02 10:21:12 · 1070 阅读 · 0 评论 -
yolov8/9/10模型在安全帽、安全衣检测中的应用【代码+数据集+python环境+GUI系统】
yolov8910模型安全帽、安全衣检测中的应用【代码+数据集+python环境+GUI系统】模型在安全帽、安全衣检测中的应用【代码数据集+python环境+GUI系统】背景意义安全帽和安全衣在工业生产、建筑施工等高风险作业环境中是保护工人免受意外伤害的重要装备。然而,在实际操作中,由于工人的疏忽或监管的不到位,往往存在未佩戴或佩戴不规范的情况,从而增加了安全事故的风险。传统的人工巡检方式不仅消耗大量的人力,而且容易出现漏检、误检的情况,难以做到全面、实时的监控。原创 2024-09-29 21:02:30 · 1274 阅读 · 0 评论 -
yolov5/8/9/10模型在交通标识识别中的应用【代码+数据集+python环境+GUI系统】
交通标识识别系统能够实时检测并识别道路上的交通标志,为驾驶员提供准确的交通信息,帮助驾驶员及时做出正确的驾驶决策,从而有效避免交通事故的发生。交通标识识别技术为交通管理部门提供了更加便捷、高效的监管手段,能够实现对交通违法行为的快速识别和处理,提高交通管理的效率和水平。在得到每个网格的预测结果后,YOLOv8会采用非极大值抑制(NMS)等后处理技术来去除重叠的边界框,只保留置信度最高的边界框作为最终的检测结果。YOLOv8采用了新的骨干网络结构,如C2f模块等,以实现更高效的特征提取和更轻量化的模型设计。原创 2024-09-27 20:46:15 · 1100 阅读 · 0 评论 -
yolov8910车流量统计【代码+数据集+python环境+GUI系统】
为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信联系我哈!这有助于减少误检和漏检的情况。关键点回归分支:在网络的最后一层添加关键点的回归分支,用于预测关键点的位置。为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。对遮挡目标的检测效果不佳:遮挡会对关键点的检测造成困难,导致定位不准确。确保代码所在的路径不能出现中文!确保代码所在的路径不能出现中文!确保代码所在的路径不能出现中文!原创 2024-09-26 23:47:39 · 577 阅读 · 0 评论 -
yolov8模型在猫脸关键点检测识别中的应用【代码+数据集+python环境+GUI系统】
yolov8模型在猫脸关键点检测识别中的应用【代码+数据集+python环境+GUI系统】yolov8模型在猫脸关键点检测识别中的应用【代码数据集+python环境+GUI系统】背景意义猫脸关键点检测是计算机视觉领域的一个重要研究方向,它基于深度学习、机器学习等技术,通过训练模型来识别和定位猫脸的关键特征点,如眼睛、鼻子、嘴巴等。这一技术类似于人脸识别,但针对的是猫咪的面部特征。随着计算机视觉技术的不断发展和深度学习算法的日益成熟,猫脸关键点检测的准确性和鲁棒性得到了显著提升。原创 2024-09-24 22:22:00 · 741 阅读 · 0 评论 -
yolov8/9关键点检测模型检测俯卧撑动作并计数【源码免费+数据集+python环境+GUI系统】
为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。原创 2024-09-24 23:24:15 · 524 阅读 · 0 评论 -
yolov8/9/10检测人脸打码【源码免费+数据集+python环境+GUI系统】
yolov8/9/10检测人脸打码【源码免费+数据集+python环境+GUI系统】原创 2024-09-25 20:43:46 · 493 阅读 · 0 评论 -
yolov5+DeepSort在行人跟踪中的应用【代码+数据集+python环境+GUI系统】
基于计算机视觉的行人跟踪技术,在当前科技与社会发展的背景下,具有深远的意义和广泛的应用价值。关键点回归分支:在网络的最后一层添加关键点的回归分支,用于预测关键点的位置。匈牙利算法:用于解决分配问题,即将一群检测框和卡尔曼预测的框进行匹配,使得每个卡尔曼预测的框都能找到和自己最匹配的检测框。为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。目标追踪:根据匹配结果,将每一帧中的目标连接起来,形成目标的运动轨迹,从而实现多目标追踪。原创 2024-09-23 23:23:09 · 840 阅读 · 0 评论 -
yolov8/9/10+deepocsort_botsort_bytetrack_strongsort_ocsort_在行人跟踪中的应用【代码+数据集+python环境+GUI系统】
基于计算机视觉的行人跟踪技术,在当前科技与社会发展的背景下,具有深远的意义和广泛的应用价值。OC-SORT是SORT算法的扩展,通过引入观测中心动量(OCM)、观测中心恢复(OCR)和观测中心在线平滑(OOS)等模块,提高了非线性运动场景中跟踪的鲁棒性。StrongSORT是在DeepSORT的基础上进行改进的一种目标跟踪算法,通过配备高级组件提高了跟踪的准确性和鲁棒性。为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。原创 2024-09-23 23:56:29 · 870 阅读 · 0 评论 -
yolov8模型在手部关键点检测识别中的应用【代码+数据集+python环境+GUI系统】
yolov8模型在手部关键点检测识别中的应用【代码+数据集+python环境+GUI系统】背景意义在手势识别、虚拟现实(VR)、增强现实(AR)等领域,手部关键点检测为用户提供了更加自然、直观的交互方式。通过检测手部关键点,系统可以准确识别用户的手势动作,进而执行相应的操作,如手势控制电脑、手势交互游戏等。在康复训练方面,在医疗康复领域,手部关键点检测技术可以用于手部运动康复和肌肉训练。通过实时监测患者的手部动作,医生可以评估其康复进展,并为其制定个性化的康复计划。原创 2024-09-21 19:39:47 · 1321 阅读 · 0 评论 -
yolov5/8/9模型在COCO分割数据集上的应用【代码+数据集+python环境+GUI系统】
在最新的YOLO版本中,如YOLOv8,通过引入新的骨干网络、检测头和损失函数等创新,进一步提高了检测速度和精度。新的版本如YOLOv8在保持原有优点的基础上,引入了更多的创新和改进,以更好地适应不同领域和任务的需求。对于YOLOv8等支持实例分割的版本来说,它们不仅具有目标检测的能力,还能够对图像中的每个目标进行像素级别的分割。Anchor-Free检测方式:相比传统基于锚点的方法,YOLOv8采用了Anchor-Free的检测方式,减少了先验形状的限制,提高了检测精度和速度。原创 2024-09-21 20:12:13 · 1019 阅读 · 0 评论 -
yolov8模型在Xray图像中关键点检测识别中的应用【代码+数据集+python环境+GUI系统】
yolov8模型在Xyolov8模型在Xray图像中关键点检测识别中的应用【代码数据集+python环境+GUI系统】1.背景意义X射线是一种波长极短、穿透能力极强的电磁波。当X射线穿透物体时,不同密度和厚度的物质会吸收不同程度的X射线,从而在接收端产生不同强度的信号。这些信号经过转换和处理,可以形成物体内部结构的图像。这种成像技术为关键点检测识别提供了基础。随着计算机视觉和机器学习技术的快速发展,图像处理与识别技术取得了显著进步。原创 2024-09-22 22:27:33 · 1200 阅读 · 0 评论 -
深度学习与应用:行人跟踪
4. 已安装软件:python版本:python 3.9,显卡驱动,cuda版本:cuda11.3 cudnn 版本:8.4.1,torch==1.12.1+cu113,torchvision= 0.13.1+cu113。- 准备多目标跟踪数据集MOT17 ,下载地址位于(Https://motchallenge.net),放置于工程路径为:(examples/val_utils/data/MOT17)3. MOT17数据集存储位置:examples/val_utils/data/MOT17。原创 2024-09-22 01:15:50 · 847 阅读 · 0 评论 -
yolov5/8/9/10模型在VOC数据集上的应用【代码+数据集+python环境+GUI系统】
在得到每个网格的预测结果后,YOLOv8会采用非极大值抑制(NMS)等后处理技术来去除重叠的边界框,只保留置信度最高的边界框作为最终的检测结果。通过融合不同层次的特征信息,算法能够更准确地检测图像中的目标。Anchor-Free检测方式:相比传统基于锚点的方法,YOLOv8采用了Anchor-Free的检测方式,减少了先验形状的限制,提高了检测精度和速度。YOLOv8支持多种数据增强技术,如Mosaic、Flip、Rotate、Crop等,可以在训练模型时增加数据的多样性,从而提高模型的泛化能力和鲁棒性。原创 2024-09-19 22:53:57 · 1034 阅读 · 0 评论 -
yolov5/8/9/10模型在车辆检测中的应用【代码+数据集+python环境+GUI系统】
这些数据不仅有助于监控交通流量、分析车辆行驶轨迹,还能及时发现并处理交通违法行为,如闯红灯、超速等,从而有效提升交通管理的效率和准确性,降低交通事故的发生率,保障公共安全。随着技术的不断进步和完善,我们有理由相信基于计算机视觉的车辆检测技术将在未来发挥更加重要的作用并创造出更加美好的交通环境。在得到每个网格的预测结果后,YOLOv8会采用非极大值抑制(NMS)等后处理技术来去除重叠的边界框,只保留置信度最高的边界框作为最终的检测结果。这些新的网络结构在保持高性能的同时,降低了模型的计算复杂度和参数量。原创 2024-09-18 22:38:44 · 953 阅读 · 0 评论 -
深度学习与应用:人体关键点检测
虚拟机数量:1个(需GPU >=4GB)人体关键点检测。原创 2024-09-19 11:01:12 · 1134 阅读 · 0 评论