信息安全中的数论速通
此版数论增加了,丰富了相关内容,更加精炼
md文档自取,可以私我,公式懒得调了,vsc打开没问题
数论中重要定理速览
-
算术基本定理:每一个大于1的自然数都可以唯一地分解为素数的乘积。
-
素数定理:描述了素数在自然数中的分布。(会单独讲解)
-
费马小定理:如果 p p p是一个素数, a a a是任意整数,那么 a p ≡ a ( m o d p ) a^p \equiv a \pmod{p} ap≡a(modp)。
-
欧拉定理:如果 a a a和 n n n互质,那么 a ϕ ( n ) ≡ 1 ( m o d n ) a^{\phi(n)} \equiv 1 \pmod{n} aϕ(n)≡1(modn),其中 ϕ ( n ) \phi(n) ϕ(n)是欧拉函数。
-
贝祖等式:对于任意整数 a a a和 b b b,存在整数 x x x和 y y y使得 a x + b y = gcd ( a , b ) ax + by = \gcd(a, b) ax+by=gcd(a,b)。
-
中国剩余定理:如果 n 1 , n 2 , … , n k n_1, n_2, \ldots, n_k n1,n2,…,nk是两两互质的整数,那么对于任意整数 a 1 , a 2 , … , a k a_1, a_2, \ldots, a_k a1,a2,…,ak,存在一个整数 x x x使得 x ≡ a i ( m o d n i ) x \equiv a_i \pmod{n_i} x≡ai(modni)对于所有的 i i i。
-
狄利克雷定理:对于任意两个互质的正整数 a a a和 d d d,存在无穷多个形如 a + n d a + nd a+nd的素数。
-
二次互反律:描述了两个不同素数的勒让德符号之间的关系。
-
高斯整数环的基本定理:每一个非零的高斯整数都可以唯一地分解为素数的乘积。
-
莫比乌斯反演公式:如果 f ( n ) f(n) f(n)和 g ( n ) g(n) g(n)是算术函数,并且它们满足 f ( n ) = ∑ d ∣ n g ( d ) f(n) = \sum_{d|n} g(d) f(n)=∑d∣ng(d),那么 g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) g(n) = \sum_{d|n} \mu(d) f\left(\frac{n}{d}\right) g(n)=∑d∣nμ(d)f(dn),其中 μ \mu μ是莫比乌斯函数。
-
素数分布的切比雪夫界限:提供了素数分布的上界和下界。
-
哥德巴赫猜想:每一个大于2的偶数都可以写成两个素数之和。(这是一个猜想,尚未被证明或证伪)
-
孪生素数猜想:存在无穷多对素数,它们之间的差为2。(这也是一个猜想)
-
四平方和定理:每一个自然数都可以表示为四个整数平方的和。
-
五次方程的阿贝尔-鲁菲尼定理:五次或更高次的多项式方程没有一般的代数解法。
素数在自然数中的分布是数论中一个非常重要的研究领域。素数是指只能被1和它本身整除的大于1的自然数,例如2、3、5、7、11等。以下是一些描述素数分布的重要定理和猜想:
-
素数定理(Prime Number Theorem):
素数定理描述了素数在自然数中的渐近分布。它指出,小于或等于给定数 x x x的素数数量,记作 π ( x ) \pi(x) π(x),大约等于 x ln ( x ) \frac{x}{\ln(x)} ln(x)x。数学上表达为:
$
\pi(x) \sim \frac{x}{\ln(x)}
$
这意味着当 x x x趋向于无穷大时, π ( x ) \pi(x) π(x)与 x ln ( x ) \frac{x}{\ln(x)} ln(x)x的比值趋向于1。 -
素数定理的精确形式:
素数定理的精确形式给出了误差项。它表明:
π ( x ) = Li ( x ) + O ( x ln 2 ( x ) ) \pi(x) = \text{Li}(x) + O\left(\frac{x}{\ln^2(x)}\right) π(x)=Li(x)+O(ln2(x)x)
其中, Li ( x ) \text{Li}(x) Li(x)是Logarithmic Integral函数, O O O表示大O符号,描述了误差的上界。 -
素数定理的强形式:
素数定理的强形式进一步细化了误差项,例如:
π ( x ) = Li ( x ) + O ( x exp ( − c ( ln x ) 3 / 5 ( ln ln x ) − 1 / 5 ) ) \pi(x) = \text{Li}(x) + O\left(x \exp(-c (\ln x)^{3/5} (\ln \ln x)^{-1/5})\right) π(x)=Li(x)+O(xexp(−c(lnx)3/5(lnlnx)−1/5))
其中 c c c是一个常数。 -
素数定理的等分布性质:
素数定理还涉及到素数在算术级数中的分布。例如,对于任意固定的整数 a a a和 q q q,如果 gcd ( a , q ) = 1 \gcd(a, q) = 1 gcd(a,q)=1,那么在1到 x x x之间,形如 a + n q a + nq a+nq(其中 n n n是非负整数)的素数数量也大致符合素数定理的形式。 -
切比雪夫界限:
切比雪夫给出了素数分布的两个重要界限。他证明了存在常数 A A A和 B B B,使得:
A x ln ( x ) < π ( x ) < B x ln ( x ) A \frac{x}{\ln(x)} < \pi(x) < B \frac{x}{\ln(x)} Aln(x)x<π(x)<Bln(x)x
对于足够大的 x x x。 -
素数定理的推广:
素数定理可以推广到更广泛的数域和代数结构中,例如代数数域中的素理想分布。 -
素数分布的猜想:
还有一些关于素数分布的重要猜想,例如:- 哥德巴赫猜想:每一个大于2的偶数都可以写成两个素数之和。
- 孪生素数猜想:存在无穷多对素数,它们之间的差为2。
质数与互质数
质数(Prime Number)
质数,也称为素数,是指大于1的自然数中,除了1和它本身以外,没有其他因数的数。换句话说,一个质数只有两个正因数:1和它本身。例如,2、3、5、7、11都是质数。最小的质数是2,它也是唯一的偶数质数,因为除了2之外的所有偶数都至少可以被2整除,因此不是质数。
质数的特点:
- 质数大于1。
- 质数只有两个正因数:1和它本身。
- 1不是质数,因为它只有一个因数。
- 除了2以外,所有的质数都是奇数。
判断一个数是否为质数的方法:
- 检查这个数是否能够被2到它的平方根之间的任何整数整除。如果不能被整除,则该数是质数。
互质数(Coprime Numbers)
互质数,也称为互素数,是指两个或多个整数的最大公约数(GCD)为1的数。如果两个整数的公因数只有1,那么这两个整数就是互质的。
互质数的特点:
- 两个连续的正整数总是互质的。
- 如果两个数互质,那么它们的任何倍数也是互质的。
- 如果两个数互质,且其中一个数与第三个数互质,那么另外两个数也互质。
判断两个数是否互质的方法:
- 使用辗转相除法(欧几里得算法)来计算两个数的最大公约数。如果最大公约数是1,那么这两个数就是互质的。
- 检查两个数是否有共同的质因数。如果没有,那么这两个数就是互质的。
互质数的特殊情况:
- 1和任何大于1的自然数都是互质的。
- 两个不同的质数总是互质的。
- 相邻的两个自然数是互质的。
- 2和任何奇数都是互质的。
- 一个奇数和因数只有2的偶数都是互质的。
- 两个数中的较大一个是质数,这两个数一定是互质的。
- 两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质的。
- 较大数比较小数的2倍多1或少1,这两个数一定是互质的。
欧拉函数
欧拉函数,记作 φ ( n ) \varphi(n) φ(n),是数论中的一个重要概念,它表示小于或等于 n n n的正整数中与 n n n互质的数的个数。以下是关于欧拉函数的详细教程:
定义
对于任意正整数 n n n, φ ( n ) \varphi(n) φ(n)表示在 1 1 1到 n − 1 n-1 n−1范围内与 n n n互质的正整数的个数。例如, φ ( 10 ) = 4 \varphi(10) = 4 φ(10)=4,因为 1 , 3 , 7 , 9 1, 3, 7, 9 1,3,7,9与 10 10 10互质。
性质
- 基本性质 1:若 p p p为质数,则 φ ( p ) = p − 1 \varphi(p) = p - 1 φ(p)=p−1。特别的, φ ( 1 ) = 1 \varphi(1) = 1 φ(1)=1。
- 基本性质 2:设 n = p k n = p^k n=pk且 p p p为质数,则 φ ( n ) = n − n p = p k − 1 × ( p − 1 ) = p k − 1 × φ ( p ) \varphi(n) = n - \frac{n}{p} = p^{k-1} \times (p - 1) = p^{k-1} \times \varphi(p) φ(n)=n−pn=pk−1×(p−1)=pk−1×φ(p)。
- 基本性质 3:欧拉函数是积性函数,即对于任意互质的两个正整数 m m m和 n n n,有 φ ( m n ) = φ ( m ) φ ( n ) \varphi(mn) = \varphi(m)\varphi(n) φ(mn)=φ(m)φ(n)。
- 基本性质 4:对于数 n n n,将其质因数分解为 ∏ i = 1 k p i r i \prod_{i=1}^{k}{p_i}^{r_i} ∏i=1kpiri,则 φ ( n ) = ∏ i = 1 k φ ( p i r i ) = ∏ i = 1 k ( p i r i − 1 × ( p i − 1 ) ) = n × ∏ i = 1 k ( 1 − 1 p i ) \varphi(n) = \prod_{i=1}^{k}\varphi(p_i^{r_i}) = \prod_{i=1}^{k}(p_i^{r_i-1} \times (p_i - 1)) = n \times \prod_{i=1}^{k}(1 - \frac{1}{p_i}) φ(n)=∏i=1kφ(piri)=∏i=1k(piri−1×(pi−1))=n×∏i=1k(1−pi1)。
公式
欧拉函数的计算公式为:
φ
(
n
)
=
n
(
1
−
1
p
1
)
(
1
−
1
p
2
)
⋯
(
1
−
1
p
n
)
\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_n}\right)
φ(n)=n(1−p11)(1−p21)⋯(1−pn1)
其中
p
1
,
p
2
,
⋯
,
p
n
p_1, p_2, \cdots, p_n
p1,p2,⋯,pn是
n
n
n的质因数。
证明
- 容斥原理:对于任意正整数 n n n,如果 n n n只存在质因子 p p p和 q q q,则与 n n n互质的数的集合需要除去 p , 2 p , 3 p , ⋯ , ⌊ n p ⌋ p p, 2p, 3p, \cdots, \lfloor \frac{n}{p} \rfloor p p,2p,3p,⋯,⌊pn⌋p以及 q , 2 q , ⋯ , ⌊ n q ⌋ q q, 2q, \cdots, \lfloor \frac{n}{q} \rfloor q q,2q,⋯,⌊qn⌋q。根据容斥原理,需要补回 p q pq pq的倍数 p q , 2 p q , ⋯ , ⌊ n p q ⌋ p q pq, 2pq, \cdots, \lfloor \frac{n}{pq} \rfloor pq pq,2pq,⋯,⌊pqn⌋pq。即 φ ( n ) = n − n p − n q + n p q = n ( 1 − 1 p ) ( 1 − 1 q ) \varphi(n) = n - \frac{n}{p} - \frac{n}{q} + \frac{n}{pq} = n(1 - \frac{1}{p})(1 - \frac{1}{q}) φ(n)=n−pn−qn+pqn=n(1−p1)(1−q1)。
- 中国剩余定理:可以证明欧拉函数是积性函数,即对于任意互质的两个正整数 m m m和 n n n,有 φ ( m n ) = φ ( m ) φ ( n ) \varphi(mn) = \varphi(m)\varphi(n) φ(mn)=φ(m)φ(n)。
此外,还可以使用筛法来高效地计算一定范围内所有整数的欧拉函数值,这种方法的时间复杂度可以达到 O ( n log log n ) O(n \log \log n) O(nloglogn),比单个计算的方法 O ( n ) O(\sqrt{n}) O(n)更优。
模运算
模运算涉及到整数运算,其中运算的结果不是通常的整数,而是除以某个正整数 n n n后得到的余数。这个正整数 n n n被称为模数。
定义
给定三个整数
a
a
a,
b
b
b,和
n
n
n,其中
n
>
0
n > 0
n>0,如果存在整数
k
k
k使得:
a
=
b
+
k
n
a = b + kn
a=b+kn
则称
a
a
a同
b
b
b模
n
n
n同余,记作:
a
≡
b
(
m
o
d
n
)
a \equiv b \pmod{n}
a≡b(modn)
符号 “≡” 在数学中通常用来表示同余关系。具体来说,如果两个整数 a a a和 b b b除以正整数 n n n后余数相同,那么我们说 a a a同余于 b b b模 n n n,可以写作:
这意味着 n n n能够整除 a − b a - b a−b,或者说 a a a和 b b b之间的差是 n n n的倍数。
基本性质
- 自反性:对于任何整数 a a a和正整数 n n n,有 a ≡ a ( m o d n ) a \equiv a \pmod{n} a≡a(modn)。
- 对称性:如果 a ≡ b ( m o d n ) a \equiv b \pmod{n} a≡b(modn),则 b ≡ a ( m o d n ) b \equiv a \pmod{n} b≡a(modn)。
- 传递性:如果 a ≡ b ( m o d n ) a \equiv b \pmod{n} a≡b(modn)且 b ≡ c ( m o d n ) b \equiv c \pmod{n} b≡c(modn),则 a ≡ c ( m o d n ) a \equiv c \pmod{n} a≡c(modn)。
- 加法性质:如果 a ≡ b ( m o d n ) a \equiv b \pmod{n} a≡b(modn)且 c ≡ d ( m o d n ) c \equiv d \pmod{n} c≡d(modn),则 a + c ≡ b + d ( m o d n ) a + c \equiv b + d \pmod{n} a+c≡b+d(modn)。
- 乘法性质:如果 a ≡ b ( m o d n ) a \equiv b \pmod{n} a≡b(modn)且 c ≡ d ( m o d n ) c \equiv d \pmod{n} c≡d(modn),则 a c ≡ b d ( m o d n ) ac \equiv bd \pmod{n} ac≡bd(modn)。
- 幂的性质:如果 a ≡ b ( m o d n ) a \equiv b \pmod{n} a≡b(modn),则对于任何正整数 k k k,有 a k ≡ b k ( m o d n ) a^k \equiv b^k \pmod{n} ak≡bk(modn)。
应用
- 密码学:在RSA加密算法中,模运算用于加密和解密信息。
- 算法:在算法中,模运算用于处理循环数组或循环链表的问题。
- 编程语言:许多编程语言提供了模运算的运算符,如
%
。
扩展欧几里得算法
在模运算中,经常需要解决一类问题:给定整数
a
a
a和
n
n
n,找到一个整数
x
x
x使得:
a
x
≡
1
(
m
o
d
n
)
ax \equiv 1 \pmod{n}
ax≡1(modn)
如果这样的
x
x
x存在,我们说
a
a
a在模
n
n
n下有逆元,并且
x
x
x就是
a
a
a的模
n
n
n逆元。扩展欧几里得算法可以用来找到这个逆元。
费马小定理
费马小定理是模运算中的一个重要定理,它指出:如果
p
p
p是一个质数,
a
a
a是一个不被
p
p
p整除的整数,则:
a
p
−
1
≡
1
(
m
o
d
p
)
a^{p-1} \equiv 1 \pmod{p}
ap−1≡1(modp)
这个定理在密码学中非常有用,尤其是在RSA算法中。
欧拉定理
欧拉定理是费马小定理的推广,它指出:如果
n
n
n是一个正整数,
a
a
a是一个与
n
n
n互质的整数,则:
a
φ
(
n
)
≡
1
(
m
o
d
n
)
a^{\varphi(n)} \equiv 1 \pmod{n}
aφ(n)≡1(modn)
其中
φ
(
n
)
\varphi(n)
φ(n)是欧拉函数,表示小于或等于
n
n
n的正整数中与
n
n
n互质的数的个数。
同余理论
同余理论是数论中的一个核心概念,它涉及到整数在模运算下的性质和行为。以下是同余理论的详细教程:
定义
- 同余:如果 m m m是 x − a x-a x−a的一个因子,就说 x x x和 a a a关于模 m m m同余,并记为 x ≡ a ( m o d m ) x \equiv a \pmod{m} x≡a(modm),也等价于 m ∥ ( x − a ) m\|(x-a) m∥(x−a)。
- 剩余:如果 x ≡ a ( m o d m ) x \equiv a \pmod{m} x≡a(modm),那么 a a a就叫做 x x x模 m m m的一个剩余。
- 最小剩余:如果 0 ≤ a < m 0 \le a < m 0≤a<m,那么就称 a a a为 x x x模 m m m的最小剩余。
- 同余类:由与某个给定的剩余同余的所有数组成的一个类叫做同余类。
- 完全剩余系:总共有 m m m个同余类,它们分别以 0 , 1 , ⋯ , m − 1 0, 1, \cdots, m-1 0,1,⋯,m−1作为代表,任何 m m m个分别属于这 m m m个剩余类的数组成一个集合,称为模 m m m的一个完全剩余系,简称完系 。
性质
- 自反性: a ≡ a ( m o d m ) a \equiv a \pmod{m} a≡a(modm)。
- 对称性:若 a ≡ b ( m o d m ) a \equiv b \pmod{m} a≡b(modm),则 b ≡ a ( m o d m ) b \equiv a \pmod{m} b≡a(modm)。
- 传递性:若 a ≡ b ( m o d m ) a \equiv b \pmod{m} a≡b(modm), b ≡ c ( m o d m ) b \equiv c \pmod{m} b≡c(modm),则 a ≡ c ( m o d m ) a \equiv c \pmod{m} a≡c(modm)。
- 加法性质:若 a 1 ≡ b 1 ( m o d m ) a_1 \equiv b_1 \pmod{m} a1≡b1(modm), a 2 ≡ b 2 ( m o d m ) a_2 \equiv b_2 \pmod{m} a2≡b2(modm),则 a 1 + a 2 ≡ b 1 + b 2 ( m o d m ) a_1 + a_2 \equiv b_1 + b_2 \pmod{m} a1+a2≡b1+b2(modm)。
- 乘法性质:若 a 1 ≡ b 1 ( m o d m ) a_1 \equiv b_1 \pmod{m} a1≡b1(modm), a 2 ≡ b 2 ( m o d m ) a_2 \equiv b_2 \pmod{m} a2≡b2(modm),则 a 1 a 2 ≡ b 1 b 2 ( m o d m ) a_1a_2 \equiv b_1b_2 \pmod{m} a1a2≡b1b2(modm)。特别地,若 a ≡ b ( m o d m ) a \equiv b \pmod{m} a≡b(modm),则 k a ≡ k b ( m o d m ) ka \equiv kb \pmod{m} ka≡kb(modm)。
定理
- 定理1:如果 a ≡ b ( m o d m ) a \equiv b \pmod{m} a≡b(modm), a ≡ b ( m o d n ) a \equiv b \pmod{n} a≡b(modn),那么 a ≡ b ( m o d [ m , n ] ) a \equiv b \pmod{[m, n]} a≡b(mod[m,n])。
- 定理2:如果 k a ≡ k b ( m o d m ) ka \equiv kb \pmod{m} ka≡kb(modm),那么 a ≡ b ( m o d m ( k , m ) ) a \equiv b \pmod{\frac{m}{(k, m)}} a≡b(mod(k,m)m)。
- 定理3:如果 a 1 , a 2 , ⋯ , a m a_1, a_2, \cdots, a_m a1,a2,⋯,am是模 m m m的一个完全剩余系,且有 ( k , m ) = 1 (k, m) = 1 (k,m)=1,那么 k a 1 , k a 2 , ⋯ , k a m ka_1, ka_2, \cdots, ka_m ka1,ka2,⋯,kam也是模 m m m的一个完全剩余系 。
Euler函数
Euler函数 ϕ ( m ) \phi(m) ϕ(m)表示不大于 m m m的正整数中与 m m m互质的个数。如果 a a a和 m m m互素,那么在模 m m m意义上的每一个和 a a a同余的数都和 m m m互素,于是就有 ϕ ( m ) \phi(m) ϕ(m)个与 m m m互素的剩余类 。
抽象代数(群、环、域)
群、环和域是抽象代数中的基本概念,它们是数学中研究集合和它们上定义的运算的代数结构。
群(Group)
定义:
群是一个集合
G
G
G,配备一个运算(通常是加法或乘法),满足以下四个条件:
- 封闭性:对于所有 a , b ∈ G a, b \in G a,b∈G,运算 a ⋅ b a \cdot b a⋅b的结果也在 G G G中。
- 结合律:对于所有 a , b , c ∈ G a, b, c \in G a,b,c∈G,满足 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c = a \cdot (b \cdot c) (a⋅b)⋅c=a⋅(b⋅c)。
- 单位元:存在一个元素 e ∈ G e \in G e∈G,使得对于所有 a ∈ G a \in G a∈G,有 e ⋅ a = a ⋅ e = a e \cdot a = a \cdot e = a e⋅a=a⋅e=a。
- 逆元:对于每个 a ∈ G a \in G a∈G,存在一个元素 b ∈ G b \in G b∈G,使得 a ⋅ b = b ⋅ a = e a \cdot b = b \cdot a = e a⋅b=b⋅a=e,其中 e e e是单位元。
例子:
- 整数集合 Z \mathbb{Z} Z配合通常的加法运算构成一个群。
- 非零有理数集合 Q ∗ \mathbb{Q}^* Q∗配合乘法运算构成一个群。
性质:
- 群的运算通常是可交换的,即 a ⋅ b = b ⋅ a a \cdot b = b \cdot a a⋅b=b⋅a,这样的群称为阿贝尔群(Abelian group)。
- 群可以有限也可以无限。
环(Ring)
定义:
环是一个集合
R
R
R,配备两个运算(通常称为加法和乘法),满足以下条件:
1.
(
R
,
+
)
(R, +)
(R,+)是一个交换群。
2. 乘法运算是结合的。
3. 分配律:对于所有
a
,
b
,
c
∈
R
a, b, c \in R
a,b,c∈R,满足
a
⋅
(
b
+
c
)
=
a
⋅
b
+
a
⋅
c
a \cdot (b + c) = a \cdot b + a \cdot c
a⋅(b+c)=a⋅b+a⋅c和
(
a
+
b
)
⋅
c
=
a
⋅
c
+
b
⋅
c
(a + b) \cdot c = a \cdot c + b \cdot c
(a+b)⋅c=a⋅c+b⋅c。
例子:
- 整数集合 Z \mathbb{Z} Z配合通常的加法和乘法运算构成一个环。
- 多项式集合 R [ x ] \mathbb{R}[x] R[x]配合多项式的加法和乘法运算构成一个环。
性质:
- 环中的乘法运算不一定是可交换的。
- 环可以有单位元(称为环的乘法单位元),也可以没有。
域(Field)
定义:
域是一个环
F
F
F,其中每个非零元素都有一个乘法逆元,并且满足以下条件:
1.
(
F
,
+
)
(F, +)
(F,+)是一个阿贝尔群。
2.
(
F
∖
{
0
}
,
⋅
)
(F \setminus \{0\}, \cdot)
(F∖{0},⋅)是一个阿贝尔群。
3. 乘法运算是结合的。
4. 分配律:对于所有
a
,
b
,
c
∈
F
a, b, c \in F
a,b,c∈F,满足
a
⋅
(
b
+
c
)
=
a
⋅
b
+
a
⋅
c
a \cdot (b + c) = a \cdot b + a \cdot c
a⋅(b+c)=a⋅b+a⋅c和
(
a
+
b
)
⋅
c
=
a
⋅
c
+
b
⋅
c
(a + b) \cdot c = a \cdot c + b \cdot c
(a+b)⋅c=a⋅c+b⋅c。
例子:
- 有理数集合 Q \mathbb{Q} Q、实数集合 R \mathbb{R} R和复数集合 C \mathbb{C} C都是域。
- 有限域 F p \mathbb{F}_p Fp(其中 p p p是一个质数),由 p p p个元素组成,也是域。
性质:
- 域中的乘法运算是可交换的。
- 域中的每个非零元素都有一个乘法逆元。
- 域没有零因子,即如果
a
⋅
b
=
0
a \cdot b = 0
a⋅b=0,则
a
=
0
a = 0
a=0或
b
=
0
b = 0
b=0。
在数学中,特别是在抽象代数的域(Field)和环(Ring)理论中,逆元是一个重要的概念。以下是逆元的定义和一些相关解释:
域中的逆元
在域
F
F
F中,对于任意非零元素
a
a
a,如果存在一个元素
b
b
b使得:
a
⋅
b
=
b
⋅
a
=
1
a \cdot b = b \cdot a = 1
a⋅b=b⋅a=1
其中
1
1
1是域中的乘法单位元,则称
b
b
b是
a
a
a的乘法逆元,通常记作
a
−
1
a^{-1}
a−1或
1
a
\frac{1}{a}
a1。
椭圆曲线
椭圆曲线的定义
椭圆曲线是定义在某个域上的曲线,通常由一个三次方程定义。最常用的形式是Weierstrass方程:
y
2
=
x
3
+
a
x
+
b
y^2 = x^3 + ax + b
y2=x3+ax+b
其中
a
a
a和
b
b
b是定义在该域上的常数,且判别式
Δ
=
−
16
(
4
a
3
+
27
b
2
)
≠
0
\Delta = -16(4a^3 + 27b^2) \neq 0
Δ=−16(4a3+27b2)=0以确保曲线是非奇异的。这种形式的曲线称为Weierstrass正常形式 。
椭圆曲线的性质
- 群结构:椭圆曲线上的点可以定义加法运算,形成一个阿贝尔群。这个群的运算满足封闭性、结合律、存在单位元和逆元 。
- 几何性质:椭圆曲线具有水平对称性,任何非垂直线与曲线的交点最多有三个 。
- 有限域上的椭圆曲线:在有限域上,椭圆曲线的点集构成的群要么是循环群,要么是两个循环群的直积 。
椭圆曲线上的点的操作
在椭圆曲线上定义了一种特殊的加法运算,这使得曲线上的点可以进行群运算。给定两个点 P P P和 Q Q Q,可以定义 P + Q P + Q P+Q为通过 P P P和 Q Q Q的直线与曲线的第三个交点。如果 P P P和 Q Q Q重合,则通过 P P P的切线与曲线的交点定义为 2 P 2P 2P。
椭圆曲线的可视化
椭圆曲线可以通过格点来可视化。在复数域中,存在一个从格点到椭圆曲线的双射对应关系。通过这个关系,可以在椭圆曲线上进行加法运算,这相当于在格点上进行模运算 。
椭圆曲线在密码学中的应用
椭圆曲线的难解问题,如离散对数问题,是密码学中椭圆曲线密码体制的基础。在椭圆曲线上,给定一个点 P P P和一个整数 n n n,找到 n P nP nP是容易的,但是反过来,给定 P P P和 n P nP nP,找到 n n n却是困难的。这个单向性质使得椭圆曲线可以用于构建公钥密码体系 。
-
选择合适的椭圆曲线和参数:在选择椭圆曲线时,需要确保曲线是非奇异的,并且参数 p p p(素数)足够大,以提供足够的安全性。同时,需要确保 p ≠ n × h p \neq n \times h p=n×h, p t ≠ 1 m o d n p^t \neq 1 \mod n pt=1modn(对于 1 ≤ t < 20 1 \leq t < 20 1≤t<20),以及 4 a 3 + 27 b 2 ≠ 0 m o d p 4a^3 + 27b^2 \neq 0 \mod p 4a3+27b2=0modp,其中 n n n是基点 G G G的阶, h h h是椭圆曲线上所有点的个数 m m m与 n n n相除的整数部分,且 h ≤ 4 h \leq 4 h≤4。
-
密钥长度:ECC的一个显著优势是其密钥长度较短,但仍然能提供与RSA等传统公钥密码体系相当的安全性。例如,256位的ECC密钥与3072位的RSA密钥具有相似的安全级别。密钥长度的选择应基于当前的安全需求和计算能力 。
-
抗攻击性:ECC算法需要能够抵抗各种攻击,包括但不限于离散对数问题攻击、侧信道攻击(如时序攻击和差分功耗分析)。为了防御这些攻击,可以采用恒定时间代码(Constant Time Code)、随机化投影坐标(Randomized Projective Coordinates)和标量盲化(Scalar Blinding)等技术 。
-
密钥的生成和管理:密钥的生成和管理对于ECC的安全性至关重要。私钥应该是随机生成的,并且保密。公钥是私钥在椭圆曲线上的点的倍数,可以通过公钥进行加密,但解密需要私钥 。
-
加密和解密过程:在加密过程中,发送方会使用接收方的公钥和一些随机数来加密信息。在解密过程中,接收方使用自己的私钥来解密信息。这个过程的安全性依赖于椭圆曲线离散对数问题的难度 。
-
结合其他加密技术:在某些应用中,ECC可以与其他加密技术(如AES)结合使用,以提供更高层次的安全性。例如,ECC可以用于密钥交换,而AES可以用于实际的数据加密和解密,这种混合算法可以提高数据在云存储和传输过程中的安全性 。
编码理论
编码理论(Coding Theory)是信息论的一个分支,它主要研究如何设计和分析编码,以确保在各种信道中传输信息的可靠性和效率。编码理论的核心目标是最小化传输错误,同时最大化传输速率。
1. 基本概念
- 信源(Source):产生信息的源头,可以是数字、文字、图像或声音等。
- 信道(Channel):信息传输的媒介,可以是有线或无线的。
- 编码(Coding):将信源的符号转换为适合在信道上传输的信号的过程。
- 解码(Decoding):接收端将接收到的信号还原为原始信源符号的过程。
- 错误检测和纠正(Error Detection and Correction):在接收端检测和修正传输过程中可能发生的错误。
2. 信源编码
- 无失真编码:目标是无损压缩,即在接收端能够完全恢复原始信息。
- 有失真编码:允许一定程度的信息失真,以实现更高的压缩率。
- 熵(Entropy):衡量信源信息量的一个度量,理想的无失真编码长度接近信源熵。
3. 信道编码
- 错误检测码:能够检测错误的编码,如奇偶校验码。
- 错误纠正码:不仅能够检测错误,还能在一定程度上纠正错误的编码,如汉明码、里德-所罗门码等。
- 信道容量(Channel Capacity):在特定的信道条件下,能够实现无误差传输的最大数据速率。
4. 编码类型
- 线性码:编码向量中任意两个合法编码的线性组合仍然是一个合法编码。
- 循环码:编码向量可以表示为一个多项式在某个次数上的循环移位。
- 卷积码:编码依赖于当前和过去几个时刻的输入符号。
- Turbo码:一种高效的编码方式,通过并行连接多个卷积码编码器来提高性能。
- 低密度奇偶校验(LDPC)码:一种具有接近香农极限性能的编码方式,由稀疏奇偶校验矩阵定义。
概率论
概率论是数学的一个分支,它研究随机现象的规律性,为不确定性的量化提供了数学工具。
1. 概率空间
- 样本空间(Sample Space):所有可能结果的集合,通常用 S S S或 Ω \Omega Ω表示。
- 事件(Event):样本空间的一个子集,表示实验结果的一个集合。
- 概率测度(Probability Measure):将每个事件赋予一个概率值,满足非负性、归一性和可数可加性。
2. 概率的基本性质
- 非负性:任何事件的概率值都是非负的。
- 归一性:整个样本空间的概率为1。
- 可数可加性:对于一系列互斥事件,它们并的概率等于各自概率的和。
3. 条件概率
- 条件概率(Conditional Probability):在某个事件已经发生的条件下,另一个事件发生的概率。
-
P
(
A
∣
B
)
=
P
(
A
∩
B
)
P
(
B
)
P(A|B) = \frac{P(A \cap B)}{P(B)}
P(A∣B)=P(B)P(A∩B)
其中,
P
(
A
∣
B
)
P(A|B)
P(A∣B)是在事件
B
B
B发生的条件下事件
A
A
A发生的条件概率。
4. 独立性
- 独立事件(Independent Events):两个事件的发生互不影响,即一个事件的发生不会改变另一个事件的概率。
- 两个事件
A
A
A和
B
B
B独立当且仅当:
P ( A ∩ B ) = P ( A ) ⋅ P ( B ) P(A \cap B) = P(A) \cdot P(B) P(A∩B)=P(A)⋅P(B)
5. 随机变量
- 随机变量(Random Variable):将样本空间中的事件映射到实数,可以是离散的或连续的。
- 离散随机变量:取值在可数集合中,如整数。
- 连续随机变量:取值在实数线上的某个区间。
6. 概率分布
- 概率质量函数(Probability Mass Function, PMF):对于离散随机变量,描述每个可能取值的概率。
- 概率密度函数(Probability Density Function, PDF):对于连续随机变量,描述概率密度。
- 累积分布函数(Cumulative Distribution Function, CDF):描述随机变量取值小于或等于某个值的概率。
7. 期望值
-
期望值(Expected Value):随机变量的平均值,是其概率分布的加权平均。
-
对于离散随机变量 X X X:
E ( X ) = ∑ x x ⋅ P ( X = x ) E(X) = \sum_{x} x \cdot P(X = x) E(X)=∑xx⋅P(X=x) -
对于连续随机变量 X X X:
E ( X ) = ∫ − ∞ ∞ x ⋅ f ( x ) d x E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx E(X)=∫−∞∞x⋅f(x)dx
其中, f ( x ) f(x) f(x)是 X X X的概率密度函数。
8. 方差和标准差
-
方差(Variance):衡量随机变量取值的分散程度。
-
对于离散随机变量 X X X:
Var ( X ) = E [ ( X − E ( X ) ) 2 ] = ∑ x ( x − E ( X ) ) 2 ⋅ P ( X = x ) \text{Var}(X) = E[(X - E(X))^2] = \sum_{x} (x - E(X))^2 \cdot P(X = x) Var(X)=E[(X−E(X))2]=∑x(x−E(X))2⋅P(X=x) -
对于连续随机变量 X X X:
Var ( X ) = E [ ( X − E ( X ) ) 2 ] = ∫ − ∞ ∞ ( x − E ( X ) ) 2 ⋅ f ( x ) d x \text{Var}(X) = E[(X - E(X))^2] = \int_{-\infty}^{\infty} (x - E(X))^2 \cdot f(x) \, dx Var(X)=E[(X−E(X))2]=∫−∞∞(x−E(X))2⋅f(x)dx -
标准差(Standard Deviation):方差的平方根,同样衡量分散程度,但与随机变量具有相同的量纲。
- σ = Var ( X ) \sigma = \sqrt{\text{Var}(X)} σ=Var(X)
9. 大数定律
- 大数定律(Law of Large Numbers):随着试验次数的增加,样本均值会趋近于期望值。
- X ˉ \bar{X} Xˉ趋近于期望值 E ( X ) E(X) E(X):
lim n → ∞ 1 n ∑ i = 1 n X i = E ( X ) \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = E(X) limn→∞n1∑i=1nXi=E(X)
10. 中心极限定理
- 中心极限定理(Central Limit Theorem):在一定条件下,大量独立同分布的随机变量之和将近似服从正态分布,无论原始分布如何。
- 如果
X
1
,
X
2
,
…
,
X
n
X_1, X_2, \ldots, X_n
X1,X2,…,Xn是一系列独立同分布的随机变量,且具有有限的均值
μ
\mu
μ和方差
σ
2
\sigma^2
σ2,则标准化的和:
Z = ∑ i = 1 n X i − n μ σ n Z = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}} Z=σn∑i=1nXi−nμ
当 n n n足够大时, Z Z Z的分布近似为标准正态分布。
11. 协方差和相关性
-
协方差(Covariance):衡量两个随机变量之间的线性关系。
-
对于两个随机变量 X X X和 Y Y Y: Cov ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] \text{Cov}(X, Y) = E[(X - E(X))(Y - E(Y))] Cov(X,Y)=E[(X−E(X))(Y−E(Y))]
-
相关系数(Correlation Coefficient):标准化的协方差,衡量两个随机变量之间的线性关系强度。
-
ρ
X
,
Y
=
Cov
(
X
,
Y
)
σ
X
σ
Y
\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}
ρX,Y=σXσYCov(X,Y)
其中,
σ
X
\sigma_X
σX和
σ
Y
\sigma_Y
σY分别是
X
X
X和
Y
Y
Y的标准差。
数理统计
数理统计是统计学的一个分支,它使用概率论的概念来分析和处理数据。数理统计提供了一套工具和方法,用于从样本数据中推断总体特征。
1. 基本概念
- 总体(Population):包含所有研究对象的集合。
- 个体(Individual):总体中的每一个成员。
- 样本(Sample):从总体中选取的一部分个体。
- 样本容量(Sample Size):样本中包含的个体数量,通常用 n n n表示。
- 参数(Parameter):描述总体特征的数值,如总体均值 μ \mu μ和总体方差 σ 2 \sigma^2 σ2。
- 统计量(Statistic):描述样本特征的数值,如样本均值 x ˉ \bar{x} xˉ和样本方差 s 2 s^2 s2。
2. 数据描述
- 集中趋势度量:
- 均值(Mean):数据的平均值,计算公式为 x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i xˉ=n1∑i=1nxi。
- 中位数(Median):将数据排序后位于中间位置的值。
- 众数(Mode):数据中出现次数最多的值。
- 离散程度度量:
- 方差(Variance):衡量数据分布的离散程度,计算公式为 s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 s2=n−11∑i=1n(xi−xˉ)2。
- 标准差(Standard Deviation):方差的平方根。
- 极差(Range):数据的最大值与最小值之差。
- 分布形状度量:
- 偏度(Skewness):衡量数据分布的对称性。
- 峰度(Kurtosis):衡量数据分布的尖峭程度。
3. 概率分布
- 离散型随机变量的概率分布:
- 二项分布(Binomial Distribution):在固定次数的独立实验中成功次数的分布。
- 泊松分布(Poisson Distribution):在固定时间或空间间隔内发生次数的分布。
- 连续型随机变量的概率分布:
- 正态分布(Normal Distribution):一种对称的钟形分布,由均值和标准差确定。
- 均匀分布(Uniform Distribution):在一定区间内等概率取值的分布。
4. 抽样分布
- 中心极限定理(Central Limit Theorem):指出样本均值的分布随着样本容量的增加而趋近于正态分布,无论总体分布如何。
- t分布(t-Distribution):当样本容量较小时,样本均值的分布。
- 卡方分布(Chi-square Distribution):卡方检验中使用的分布。
- F分布(F-Distribution):方差分析中使用的分布。
5. 参数估计
- 点估计(Point Estimation):用样本统计量来估计总体参数的单个值。
- 区间估计(Interval Estimation):构建一个区间,使得总体参数以一定的概率落在这个区间内。
- 置信区间(Confidence Interval):区间估计的一种,给出估计的可靠性,如95%置信区间。
6. 假设检验
- 零假设(Null Hypothesis) H 0 H_0 H0:通常表示没有效应或没有差异的假设。
- 备择假设(Alternative Hypothesis) H 1 H_1 H1:与零假设相对的假设。
- 检验统计量(Test Statistic):用于决定是否拒绝零假设的统计量,如t统计量或卡方统计量。
- P值(P-value):在零假设为真的前提下,观察到的统计量或更极端情况出现的概率。
- 显著性水平(Significance Level) α \alpha α:拒绝零假设的阈值,通常取0.05或0.01。
7. 回归分析
- 简单线性回归(Simple Linear Regression):分析一个自变量和一个因变量之间的线性关系。
- 多元线性回归(Multiple Linear Regression):分析多个自变量和一个因变量之间的线性关系。
- 回归方程(Regression Equation):描述自变量和因变量之间关系的方程。
8. 卡方检验
- 拟合优度检验(Goodness of Fit Test):检验样本数据是否符合某种分布。
- 独立性检验(Test of Independence):检验两个分类变量是否独立。