学习记录——角点检测,特征匹配,图片拼接,图像插值

1. 角点检测

Harris角点检测

import cv2
import numpy as np
from matplotlib import pyplot as plt
 
img=cv2.imread('timg.jpg') #原图为彩色图,可将第二个参数变为0,为灰度图
 
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 # 输入图像必须是float32, 最后一个参数[0.04,0.06]
gray = np.float32(gray)
dst = cv2.cornerHarris(gray,2,3,0.04) #输入图像的数据类型必须为float32,
 
dst = cv2.dilate(dst,None)    #放大标记角点,利于显示
 
img[dst>0.01*dst.max()]=[0,0,255]#最佳值的阈值选用0.01*dst.max(),可能会根据图像而有所不同。
 
cv2.imshow('dst',img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()
cv2.imwrite('test.png',img)

在这里插入图片描述

Shi-Tomasi角点检测

import numpy as np
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值