最近的神经总是受所有有关AlphaGo的新闻影响,不住地思考电子计算机上的人工智能能走多远,能做成什么样子。从没搞过人工智能,看官看看便罢。
有几点小想法:
一、人工智能的“自我意识”现在似乎还没有存在于AlphaGo这样的项目中,但在将来一旦有,应该是人为赋予的。为什么不是机器自己产生的呢?因为所有人工智能的进化都是通过两个途径——机器学习和人为的算法改进。机器学习的作用是能让算法实现一个既定目标(人为确定的目标)的效率更高,效果更好。但是,算法改进,包括将来的“自我意识”的赋予,应该都是人为的。机器到什么时候能够自动改进算法了呢?我认为这是在人为赋予了自我意识以后的事情。
二、“自我意识”是什么?我认为就是生存意识(寻找食物)、寻求社会认同(寻求认同以得到信心和食物)的意识和改进自己的意识(提高能力和自信)。感情是其中必要的一部分,感情的作用之一是驱动自我改进。自我意识相当于一个主循环,以类似于穷举/暴力破解的方法来寻找解决方案,不设固定思考时间的阈值,而是通过生存意识、寻求社会认同的意识等来限制其不陷入死循环;另外,为了提高穷举的效率,有两个优化方式:通过神经元网络(第三点会讲到)和一个背景思维引擎(用于生成潜意识,潜意识可以生成灵感和一些别的东西 [比如焦虑等等也是从潜意识里产生的])。需要一个能产生高质量随机数的随机数发生器作为它的熵,以使得它正常工作,以便在多个可能选项中更快地缩小搜索范围(难道这就是传说中的蒙特卡洛树的思想?)。
但是,在第三点中我们会提到,机器的理智可以做得非常强大,从而在具感情的“自我意识”控制下,机器还是可以轻松在棋类等可计算的领域超越人类。
三、机器的神经。理智。神经元网络是分支机构,提供“联想”的功能。神经元网络最大的优点就是有高度自适应的学习能力。可以用于提供第一手的资料,当然也包括误判在内(比如听人说话时,由于说话不清楚而错误理解单词),误判的解决需要自我意识驱动理智来修正。那么理智(算法)怎么产生呢?可以通过自我意识驱动的计算来产生(随机性加神经元网络选择)。可以为同一个对象产生多个理智思路。但是,具体使用哪个理智思路,在选择前先让神经元网络作预判。一个原则是,当选择很多时,就让神经元网络做预判。但是怎样给它反馈呢?需要自我意识找到神经网络预判出来的东西,跟踪它的“使用效果”,然后作为反馈;问题在于人的工作机制似乎不是这样的;人有许多天生的神经元网络(比如视觉神经网络),它们是有天生的识别功能(比如视觉神经识别形状和人脸),而不是后天训练出来的。
理智(算法)既可以由自我意识解释执行,也可以编译为机器语言。所以运算速度可以是很高的。
四、机器学习的数据来源。现在看来,主要有两方面:人类的知识(部分通过分析网上的数据,部分通过和人的日常交流)和机器对话产生的知识。