几道斜率优化

见注释,注意一下由于要移项,所以x一定要是大减小!

任务安排 1 2 3

#include<bits/stdc++.h>
using namespace std;

#define read(x) scanf("%d",&x)
#define inf (1LL<<60)
#define maxn 5000 
#define maxS 50
#define maxw 100
#define ll long long

int n,S;
int t[maxn+5],c[maxn+5];
int sumt[maxn+5],sumc[maxn+5];

ll f[maxn+5];

int main() {
	
	read(n),read(S);
	for(int i=1;i<=n;i++) {
		read(t[i]),read(c[i]);
		sumt[i]=sumt[i-1]+t[i];
		sumc[i]=sumc[i-1]+c[i];
	}
	for(int i=1;i<=n;i++) {	//这一组在i结束 
		f[i]=inf;
		for(int j=0;j<i;j++) {	//上一组任务在j结束 
			f[i]=min(f[i],f[j]+sumt[i]*((ll)sumc[i]-sumc[j])+S*((ll)sumc[n]-sumc[j]));
		}
	}
	
	printf("%lld",f[n]);
		
	return 0;
}
#include<bits/stdc++.h>
using namespace std;

#define read(x) scanf("%d",&x)
#define inf (1LL<<60)
#define maxn int(3e5) 
#define maxS 512
#define maxw 512
#define ll long long

int n,S;
ll sumt[maxn+5],sumc[maxn+5]; 

ll f[maxn+5];
// f[i] = f[j] - (sumt[i]+S)*sumc[j] + sumt[i]*sumc[i] + S*sumc[n]
// f[j] = (S+sumt[i])*sumc[j] + f[i]-(sumt[i]+S)*sumc[i]

ll que[maxn+5];
int h,t; 

int main() {
	
	read(n),read(S);
	for(int i=1;i<=n;i++) {
		int t,c;
		read(t),read(c);
		sumt[i]=sumt[i-1]+t;
		sumc[i]=sumc[i-1]+c;
	}
	
	h=0,t=0;
	for(int i=1;i<=n;i++) {
		int k=S+sumt[i];	//当前点的斜率 
		while(h<t) {	//至少有两个数 
			int j1=que[h],j2=que[h+1];
			if(f[j2]-f[j1]<=(sumc[j2]-sumc[j1])*k) ++h;	// (f[j2]-f[j1]) / (sumc[j2]-sumc[j1]) <= k; 
			else break;
		}
		int j=que[h];
		f[i] = f[j] - (sumt[i]+S)*sumc[j] + sumt[i]*sumc[i] + S*sumc[n];
		while(h<t) {
			int j1=que[t-1],j2=que[t];
			if( (sumc[i]-sumc[j2])*(f[j2]-f[j1]) >= (sumc[j2]-sumc[j1])*(f[i]-f[j2]) ) --t;	// (f[j2]-f[j1]) / (sumc[j2]-sumc[j1]) >= (f[i]-f[j2]) / (sumc[i]-sumc[j2]); 
			else break;
		}
		que[++t]=i;
	}
	
	printf("%lld",f[n]);
	
		
	return 0;
}
#include<bits/stdc++.h>
using namespace std;

#define read(x) scanf("%d",&x)
#define inf (1LL<<60)
#define maxn int(3e5) 
#define maxS 512
#define maxw 512
#define ll long long

int n,S;
ll sumt[maxn+5],sumc[maxn+5]; 

ll f[maxn+5];
// f[i] = f[j] - (sumt[i]+S)*sumc[j] + sumt[i]*sumc[i] + S*sumc[n]
// f[j] = (S+sumt[i])*sumc[j] + f[i]-(sumt[i]+S)*sumc[i]

int que[maxn+5];
int h,t; 

bool check(int x,ll k) {
	return f[que[x+1]]-f[que[x]]<=(sumc[que[x+1]]-sumc[que[x]])*k;
}

int main() {
	
	read(n),read(S);
	for(int i=1;i<=n;i++) {
		int t,c;
		read(t),read(c);
		sumt[i]=sumt[i-1]+(ll)t;
		sumc[i]=sumc[i-1]+(ll)c;
	}
	
	h=0,t=0;
	for(int i=1;i<=n;i++) {
		ll k=S+sumt[i];	//当前点的斜率 
		
		int l=h,r=t;	//二分
		while(l<r) {
			int mid=(l+r)>>1;
			if(check(mid,k)) l=mid+1;
			else r=mid; 
		}
		
		int j=que[l]; 
		f[i] = f[j] - k*sumc[j] + sumt[i]*sumc[i] + S*sumc[n];
		while(h<t) {
			int j1=que[t-1],j2=que[t];
			if( (sumc[i]-sumc[j2])*((double)f[j2]-f[j1]) >= (sumc[j2]-sumc[j1])*((double)f[i]-f[j2]) ) --t;	// (f[j2]-f[j1]) / (sumc[j2]-sumc[j1]) >= (f[i]-f[j2]) / (sumc[i]-sumc[j2]); 
			else break;
		}
		que[++t]=i;
	}
	
	printf("%lld",f[n]);
	
		
	return 0;
}

运输小猫

#include<bits/stdc++.h>
using namespace std;

#define maxn 100005
#define maxp 105
#define inf (1LL<<60)
#define ll long long

int n,m,P;
ll D[maxn+5];	//sumD
ll d[maxn+5];	//sum{T[i]-sumD[H[i]]}

ll f[maxn+5][2];	//f[i] 前i只猫,p个运输员
//f[i][p] = f[j][p-1]+ (i-j)*(d[i]-d[i-1])-(d[i]-d[j])
//f[j][p-1]+d[j] = (d[i]-d[i-1])*j - (d[i]-d[i-1])*i + f[i][p]+d[i]

int que[maxn+5]; 
int h=0,t=0;

int main() {
	scanf("%d%d%d",&n,&m,&P);
	for(int i=2;i<=n;i++) {
		scanf("%lld",&D[i]);
		D[i]+=D[i-1]; 
	}
	for(int i=1;i<=m;i++) {
		int h,t;
		scanf("%d%d",&h,&t);
		d[i]=-D[h]+t;
	}
	
	sort(d+1,d+1+m);
	for(int i=1;i<=m;i++) d[i]+=d[i-1];
	
	for(int i=1;i<=m;i++) f[i][0]=inf;
	for(int p=1;p<=P;p++) {
		
		que[0]=que[1]=0;
		h=t=0;
		
		for(int i=1;i<=m;i++) {
			
			#define gety(x,y) (f[x][(y)&1]+d[x])
			
			ll k=d[i]-d[i-1];
			
			while(h<t) {
				int j1=que[h],j2=que[h+1];
				if(gety(j2,p-1) - gety(j1,p-1) <= k*(j2-j1)) ++h;
				else break;
			}
			
			int j=que[h];
			f[i][p&1] = f[j][(p-1)&1]+ (i-j)*k-(d[i]-d[j]);
			
			while(h<t) {
				int j1=que[t-1],j2=que[t];
				if( (gety(j2,p-1) - gety(j1,p-1))*(i-j2) >= (gety(i,p-1) - gety(j2,p-1))*(j2-j1) ) --t;
				else break;
			}
			que[++t]=i;
		}
	}
	
	printf("%lld",f[m][P&1]);
	
	return 0;
}

玩具装箱

#include<bits/stdc++.h>
using namespace std;

#define maxn ((int)5e4)

typedef long long ll;
typedef double db;

const db inf=1e30;

int n,L;
db sum[maxn+5]; 
db f[maxn+5];
//f[i] = f[j]+Square(sum[i]+i-sum[j]-j-1-L)
//f[j]+Square(sum[j]+j) = 2*(sum[i]+i-L-1)*(sum[j]+j) + f[i]-Square(sum[i]+i-L-1)

db Square(db x) {return x*x;}

int que[maxn+5];
int h,t;

int main() {
	
	scanf("%d%d",&n,&L);
	for(int i=1;i<=n;i++) {
		scanf("%lf",&sum[i]);
		sum[i]+=sum[i-1];
	}
	
	for(int i=1;i<=n;i++) {
		db k=2*(sum[i]+i-L-1); 
		
		#define x(i) (sum[i]+i)
		#define y(i) (f[i]+Square(sum[i]+i)) 
		
		while(h<t) {
			int j1=que[h],j2=que[h+1];
			if(y(j2)-y(j1)<=k*(x(j2)-x(j1))) ++h;
			else break;
		}
		
		int j=que[h];
		f[i] = f[j]+Square(sum[i]+i-sum[j]-j-1-L);
		
		while(h<t) {
			int j1=que[t-1],j2=que[t];
			if( (y(j2)-y(j1))*(x(i)-x(j2)) >= (y(i)-y(j2))*(x(j2)-x(j1)) ) --t;
			else break;
		}
		que[++t]=i;
	}
	
	printf("%.0lf",f[n]);
	
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值