高效能神经形态计算中的学习:FPGA与模拟/混合信号加速器
1. FPGA 基加速器
1.1 FPGA 概述
FPGA 是一种可重新配置的硬件,能够进行不同类型的计算和操作。在构建成本高昂的专用集成电路(ASIC)之前,它常被用作验证算法和架构的原型。与通用处理器和 ASIC 相比,FPGA 具有独特的优势。它每瓦性能通常高于通用处理器,同时比固定功能的 ASIC 更具灵活性。因此,许多研究人员采用 FPGA 进行初始设计的原型开发,一些大公司也将其用作深度学习的平台。
1.2 FPGA 上神经网络的实现
早在深度学习流行之前,就已经开始在 FPGA 上实现神经网络。在很多情况下,FPGA 被用作快速原型来展示算法的有效性。近年来,随着深度学习的复兴,对用于执行深度学习任务的高能效、高吞吐量硬件的需求巨大。构建低功耗、高性能 FPGA 基人工神经网络(ANN)加速器的策略与之前介绍的类似,以下是一些有效的策略:
- 优化数据访问模式 :合理安排数据的读取和存储顺序,减少数据传输的延迟和能耗。
- 融合层卷积 :将多个卷积层的操作合并,减少中间结果的存储和传输,提高计算效率。
- 数据量化 :降低数据的精度,减少存储和计算所需的资源。
- 利用网络稀疏性 :识别并利用网络中大量的零值,减少不必要的计算。
1.3 FPGA 设计约束与优化
尽管 FPGA 具有较高的编程灵活性,但其资源(如可用编程单元数量和 DRAM 带宽)
超级会员免费看
订阅专栏 解锁全文
20

被折叠的 条评论
为什么被折叠?



