响应曲面法(更新中)

  1. 若输入因子个数太多,则进行响应面曲面研究之前应通过一个筛选试验剔除那些不重要的因子。
  2. 响应曲面方法可分为两个阶段实施:
    1. 当试验区域远离最优区域时,实施一个基于 2 k − p 2^{k-p} 2kp设计或Plackett-Burman设计的一阶试验,并拟合(9.4)中的一阶模型。基于后面要讨论的搜索方法,它可能在不同的区域上重复。
    2. 当试验区域接近或在最优区域时,实施一个基于二阶设计的二阶试验,并拟合(9.5)中的二阶模型。
  3. 为了确定一阶试验是否已经移至响应曲面的弯曲部分,使用基于一阶试验和中心点上几次试验的整体曲度检验。
  4. 应在输入因子空间上实施搜索以确定一阶试验是否继续进行或被一个二阶试验取代。下面两点讨论了两种搜索方法。
  5. 一旦拟合了一阶模型,就可在最峭攀登方向上对最高的 y y y值进行搜索,沿着最峭攀登路径进行几次试验。这可一直重复到去读检验表明有显著的曲度效应并且一阶试验应扩大为二阶试验为止。
  6. 另一种搜索方法时方格搜索法,它利用每个因子的主效应的符号和大小来缩小搜索范围或将搜索移至邻近的区域。
  7. 典则分析可把二阶响应曲面进行如下分类:
    1. 当所有的特征值同号时,它是一个椭圆系统。为负号时,稳定点时最大响应点;为正号时,稳定点时最小响应点。
    2. 当特征值不同号时,它是一个双曲系统,稳定点是鞍点。
    3. 当其中一个特征值为零或接近零时,它是一个岭系统。当稳定点位于试验区域内时,他是一个稳定岭系统,当稳定点远离试验区域时,它是一个上升(或下降)岭系统。
  8. 对望目、望小和望大特征问题分别在(9.22)-(9.27)中定义了渴求函数,联合不同响应特征的渴求值,在(9.28)和(9.29)中定义了渴求函数,最大化整体渴求函数的因子设计被确认为在不同响应上达到最优平衡的因子设置。
  9. 二阶设计允许二阶模型中的所有回归系数可估。下面两点讨论了有效的二阶设计,参见附表9A-9C。
  10. 中心符合设计师最常用的二阶设计,它由三部分组成:立方体点,中心点和星点。
    1. 立方体点基于一个一阶设计(如 2 k − p 2^{k-p} 2kp或Plackett-Burman设计),通过选择较小的一阶设计(见附表9A.1)可使试验次数较少。
    2. 星点与原点之间的距离 α \alpha α可由(9.30)中的可旋转性准则或设计区域的几何性质或实际约束来决定。若可旋转的设计的试验次数太多,则应考虑具有近似可旋转性和其他性质的较小的设计。
    3. 中心点试验次数:当 α \alpha α接近于1时为1-2次,当 α \alpha α接近于 k \sqrt{k} k 时为3-5次,当 α \alpha α介于这两个极端值之间时为2-4次,其中 k k k时输入因子的个数。若要求估计误差方差,则需要4-5次或更多次试验。
  11. Box-Behnken设计和均匀外壳设计外壳设计是适用于球形区域的二阶设计。只有当他们比中心复合设计由某些特定的优点时才考虑使用它们。Box-Behnken设计只要求每个因子有三水平,当 k = 4 k=4 k=4 5 5 5时设计可安排在正交区组中。若试验必须进行分区组并且区组效应潜在显著,正交分区组是一个期望的性质。均匀外壳设计将设计点更均匀地分布在设计区域中。

中心复合设计

中心复合设计是最常用的二阶设计。
假设有 k k k个输入因子,用 x = ( x 1 , x 2 , ⋯   , x k ) \mathbf{x}=(x_1,x_2,\cdots,x_k) x=(x1,x2,,xk)表示其编码形式。一个中心复合设计有下面三部分组成:

  1. n f n_f nf个立方体点(cube point)[或角点(corner point)],其中 x i = − 1 x_i = -1 xi=1或1, i = 1 , ⋯   , k i=1,\cdots,k i=1,,k。它们组成设计的因析部分(factorial portion)
  2. n c n_c nc个中心点(center point),其中 x i = 0 x_i=0 xi=0 i = 1 , ⋯   , k i=1,\cdots,k i=1,,k
  3. 2 k 2k 2k个星点(star point)[或轴点(axial point)],具有形式( 0 , ⋯   , x i , ⋯   , 0 0,\cdots,x_i,\cdots,0 0,,xi,,0), x i = − α x_i=-\alpha xi=α α \alpha α i = 1 , ⋯   , k i=1,\cdots,k i=1,,k
    中心复合设计可用于单个(single)试验或序贯试验中,立方体点和部分中心点构成一个一阶设计。若试验数据表明存在整体曲度,则可通过添加星点和其他中心点来将设计扩展为一个二阶设计。另一方面,若试验区域接近最优区域,则序贯试验不需要,应在单个试验中使用一个中心复合设计。以序贯的形式选用中心复合设计确实是有好处的。
    选择中心复合设计时有三个问题:
选择设计的因析部分

由于要拟合的二阶模型
y = β 0 + ∑ i = 1 k β i j x i x j + ∑ i = 1 k β i j x i 2 + ϵ (1) y = \beta_0+\sum_{i=1}^{k}\beta_{ij}x_ix_j+\sum_{i=1}^{k}\beta_{ij}x^2_i+\epsilon \tag{1} y=β0+i=1kβijxixj+i=1kβijxi2+ϵ(1)
中需要拟合的参数有 ( k + 1 ) ( k + 2 ) / 2 (k+1)(k+2)/2 (k+1)(k+2)/2个,因此中心复合设计中不同设计点的总数 N = n f + 2 k + 1 N=n_f+2k+1 N=nf+2k+1至少为 ( k + 1 ) ( k + 2 ) / 2 (k+1)(k+2)/2 (k+1)(k+2)/2
定理:在任何一个不用任意主效应做定义关系的 2 k − p 2^{k-p} 2kp设计为因析部分的中心复合设计中,公式KaTeX parse error: Undefined control sequence: \eqref at position 1: \̲e̲q̲r̲e̲f̲{eq1}中的下列参数是可估的: β 0 , β i , β i i \beta_0,\beta_i,\beta_{ii} β0,βi,βii i = 1 , ⋯   , k i=1,\cdots,k i=1,,k,以及从每个别名效应集中挑选的一个 β i j \beta_{ij} βij i < j i<j i<j。每个别名效应集中不可能有多于一个的 β i j \beta_{ij} βij是可估的。
中心复合设计中每个因子应有3或5水平。定理9.1可以用来寻早较少次数的中心复合设计。

  1. For k = 2, using the resolution II design with I = AB for the factorial portion leads to a second-order design according to Theorem 10.1. If more runs can be afforded, the 2 2 2^2 22 design can be chosen for the factorial portion.
  2. For k = 3, either the 2 3 − 1 2^{3−1} 231 III or the 2 3 2^3 23 design can be chosen for the factorial portion.
  3. For k = 4, either the 2 4 − 1 2^{4−1} 241 III design with I = ABD or the 2 4 2^4 24 design can be chosen for the factorial portion. According to Theorem 10.1, the 2 4 − 1 2^{4−1} 241 IV design is not a good choice.
  4. For k = 5, the 2 5 − 1 2^{5−1} 251 V design is a good choice for the factorial portion. Because it has resolution V, there is really no need to use the 2 5 2^5 25 design.
  5. For k = 6, the 2 6 − 2 2^{6−2} 262 design given in the table has resolution III∗ because it has no word of length four. The minimum aberration 2 6 − 2 2^{6−2} 262 design has resolution IV and is therefore not a good choice for the factorial portion. Use of the 2 6 − 1 2^{6−1} 261 V I design would require 16 additional runs and is hardly justified.
  6. For k = 7, the 2 7 − 2 2^{7−2} 272 design given in the table has resolution III∗ . The minimum aberration 2 7 − 2 2^{7−2} 272 design has resolution IV and is therefore not a good choice for the factorial portion.

利用Plackett-Burman设计做因析部分可以找到更小的中心复合设计。

  1. For k = 4, an intermediate run size between the 8-run and 16-run designs is available by using the 12-run Plackett–Burman design. It can be shown by computer enumeration that all the 12 × 4 submatrices of the 12-run Plackett–Burman design (see Appendix 7A) are isomorphic. (Two matrices are isomorphic if one can be obtained from the other by permutations of rows, columns, and levels.) Therefore we can choose the first four columns for the factorial portion. It turns out that, among its 12 rows, two are identical (or called repeated runs). One of them can be removed and only an 11 × 4 matrix is needed for the factorial portion.
  2. For k = 5, the same technique leads to the construction of a very economical design. Among all the 12 × 5 submatrices of the 12-run Plackett-Burman design, there are two non-isomorphic types. One type has two identical rows. By removing one of the rows, we can use an 11 × 5 matrix for the factorial portion, resulting in a 22-run central composite design, which has only one more run over the minimal required size of 21. The second type has no identical rows and therefore has one more run than the previous design.
  3. For k = 7, the smallest resolution III∗ design has 32 runs. Instead of using a 27−2 III∗ design, we can use a 24 × 7 submatrix of the 24-run Plackett–Burman design for the factorial portion. Among the different types of the 24 × 7 submatrices, one type has two pairs of identical rows. By removing one row from each pair, we can use a 22 × 7 submatrix for the factorial portion. The resulting central composite design has 37 runs, which is one more than the minimal required size of 36. Another type has only one pair of identical rows. By removing one row from the submatrix, we can use a 23 × 7 submatrix for the factorial portion
α \alpha α的选择

一般地, α \alpha α应选择在1和 k \sqrt{k} k 之间,很少在此范围之外。
α = 1 \alpha=1 α=1称为面中心立方体(face center cube)设计。两个好处:1.唯一地要求三水平的中心复合设计。如果有一个或多个因子是定性的只能取三水平,则五水平的中心复合设计就不适用。若设计区域是一个立方体,则这种设计是有效的,若因子范围的选择是彼此独立的,则设计区域自然就是立方体的。对于立方体区域,参数估计的效率随着星点向极端情形即立方体的面上移动而增加。
α = k \alpha=\sqrt{k} α=k 的选择使星点和立方体点位于同一球面上,这样的设计常称为球形设计(spherical design)。把星点至于区域的极端情形,参数估计的效率会增加。但对大的 k k k,星点离中心点太远,在因子的中间区域得不到响应曲面的信息,特别是在轴上。
可旋转性:对于因析部分为 2 Ⅴ k − p , 2_{Ⅴ}^{k-p}, 2kp α = n f 4 \alpha = \sqrt[4]{n_f} α=4nf 时,可保证设计的可旋转性

中心点的试验次数

对于 α = k \alpha = \sqrt{k} α=k (球形区域),至少需要一个中心点,经验法则上是当 α \alpha α接近 s q r t k sqrt{k} sqrtk时,中心点需做3至5次试验。在两个极端之间,应考虑2至4次试验。若在中心点做重复试验的目的是估计方差,则可能需要多于4至5次试验。

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值