5、F在机器学习中的应用:从基础到模型优化

F#在机器学习中的应用与优化

F#在机器学习中的应用:从基础到模型优化

数据处理与模式匹配

在拥有数据后,我们需要从训练集中找出与目标图像最接近的图像,这就需要一个距离函数。在F#中,我们可以使用以下方式定义曼哈顿距离函数:

let manhattanDistance (pixels1,pixels2) =
    Array.zip pixels1 pixels2
    |> Array.map (fun (x,y) -> abs (x-y))
    |> Array.sum 

这里运用了F#的元组和模式匹配特性。元组是一组未命名但有序的值,可能是不同类型。例如:

let x = "Hello", 42 // 创建一个包含2个元素的元组
let (a, b) = x // 通过模式匹配解包x的两个元素
printfn "%s, %i" a b
printfn "%s, %i" (fst x) (snd x)

在F#中,逗号通常表示元组。对于二元组,可使用 fst snd 函数访问其第一个和第二个元素。而对于更多元素的元组,不支持 fst snd ,可以使用通配符 _ 忽略某些元素,如:

let y = 1,2,3,4
let (c,_,d,e) = y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值