F#在机器学习中的应用:从基础到模型优化
数据处理与模式匹配
在拥有数据后,我们需要从训练集中找出与目标图像最接近的图像,这就需要一个距离函数。在F#中,我们可以使用以下方式定义曼哈顿距离函数:
let manhattanDistance (pixels1,pixels2) =
Array.zip pixels1 pixels2
|> Array.map (fun (x,y) -> abs (x-y))
|> Array.sum
这里运用了F#的元组和模式匹配特性。元组是一组未命名但有序的值,可能是不同类型。例如:
let x = "Hello", 42 // 创建一个包含2个元素的元组
let (a, b) = x // 通过模式匹配解包x的两个元素
printfn "%s, %i" a b
printfn "%s, %i" (fst x) (snd x)
在F#中,逗号通常表示元组。对于二元组,可使用 fst
和 snd
函数访问其第一个和第二个元素。而对于更多元素的元组,不支持 fst
和 snd
,可以使用通配符 _
忽略某些元素,如:
let y = 1,2,3,4
let (c,_,d,e) = y