题目连接:点击打开链接
此题有三点需要注意一下:
1.两个城市之间可能不止一条路,也就是可能有重边,赋值的时候要保证是最小的。
2.自己回到自己当然是输出0。
3.这是个无向图,是双向边。
注意到这三个问题后,这道题就没什么陷阱了,有两种解法,分别是Dijkstra 和 Floyd 算法。
首先说下Dijkstra算法,算法的核心思想就是从源点开始,一层层向外扩展直到扩展到终点,扩展的同时更新其他点到起点的距离。将所有的点分成两个集合S和V,S集合开始只有源点,其余的点在V中,扩展到的点放入S集合中,直到你需要的结果为止或V为空集。
所谓Dijkstra的扩展,其实我感觉像是贪心的思想,寻找剩余点中距离你当前源点最近的那个,再通过你这个扩展的点更新到最初源点的距离。具体的自己还可以搜集网上其他资料。
#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAX = 200;
const int Max = 9999999;
int city[MAX][MAX];
int dist[MAX], k, n, m;
bool visit[MAX];
void path(int fin)//Dijkstra算法
{
for(int j = 1; j < n; j++)
{
int mins = Max;
for(int i = 0; i < n; i++)
if(mins > dist[i] && !visit[i])//贪心,找到最近的点
{
mins = dist[i];
k = i;
}
visit[k] = true;
for(int i = 0; i < n; i++)//从找到的点更新起点到其他点的距离
dist[i] = min(dist[i], dist[k]+city[k][i]);
}
}
int main()
{
while(cin >> n >> m)
{
for(int i = 0; i < n; i++)//初始化
for(int j = 0; j < n; j++)
{
if(i == j) city[i][j] = 0;
else city[i][j] = city[j][i] = Max;
}
for(int i = 0; i < m; i++)
{
int n1, n2, k;
cin >> n1 >> n2 >> k;
if(city[n1][n2] > k)//注意重边的问题
city[n1][n2] = city[n2][n1] = k;
}
memset(visit, false, sizeof(visit));
int start, fin;
cin >> start >> fin;
visit[start] = true;
for(int i = 0; i < n; i++)//起点到其他点的距离
dist[i] = city[start][i];
path(fin);
if(dist[fin] < Max) cout << dist[fin] << endl;
else cout << "-1" << endl;
}
return 0;
}
再来说下 Floyd算法,这是一个O(n^3)的算法,算是动态规划的思想,其他的我觉得就很暴力了,一个城市到另外一所城市最短路径无非两种:1.直接到达,2.经过其他城市间接到达,把每个点都搜一遍答案就出来。唯一要注意的是,途中需要经过的城市的点放在最外一层循环,否则可能会过早的决定最短路径而导致错误。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int MAX = 200;
const int Max = 9999999;
int city[MAX][MAX];
int dist[MAX][MAX], k, n, m;
int main()
{
while(cin >> n >> m)
{
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{
if(i == j) city[i][j] = 0;
else city[i][j] = city[j][i] = Max;
}
for(int i = 0; i < m; i++)
{
int n1, n2, k;
cin >> n1 >> n2 >> k;
if(city[n1][n2] > k)
city[n1][n2] = city[n2][n1] = k;
}
memcpy(dist, city, sizeof(city));
for(int k = 0; k < n; k++)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j]);
}
}
}
int start, fin;
cin >> start >> fin;
if(start == fin) cout << "0" << endl;
else if(dist[start][fin] < Max) cout << dist[start][fin] << endl;
else cout << "-1" << endl;
}
return 0;
}