HDU1874----畅通工程续

题目连接:点击打开链接

       此题有三点需要注意一下:

       1.两个城市之间可能不止一条路,也就是可能有重边,赋值的时候要保证是最小的。

       2.自己回到自己当然是输出0。

       3.这是个无向图,是双向边。

       注意到这三个问题后,这道题就没什么陷阱了,有两种解法,分别是Dijkstra 和 Floyd 算法。

       首先说下Dijkstra算法,算法的核心思想就是从源点开始,一层层向外扩展直到扩展到终点,扩展的同时更新其他点到起点的距离。将所有的点分成两个集合S和V,S集合开始只有源点,其余的点在V中,扩展到的点放入S集合中,直到你需要的结果为止或V为空集。

所谓Dijkstra的扩展,其实我感觉像是贪心的思想,寻找剩余点中距离你当前源点最近的那个,再通过你这个扩展的点更新到最初源点的距离。具体的自己还可以搜集网上其他资料。

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;

const int MAX = 200;
const int Max = 9999999;
int city[MAX][MAX];
int dist[MAX], k, n, m;
bool visit[MAX];
void path(int fin)//Dijkstra算法
{
    for(int j = 1; j < n; j++)
    {
        int mins = Max;
        for(int i = 0; i < n; i++)
            if(mins > dist[i] && !visit[i])//贪心,找到最近的点
            {
                mins = dist[i];
                k = i;
            }
        visit[k] = true;
        for(int i = 0; i < n; i++)//从找到的点更新起点到其他点的距离
            dist[i] = min(dist[i], dist[k]+city[k][i]);
    }
}
int main()
{
    while(cin >> n >> m)
    {
        for(int i = 0; i < n; i++)//初始化
            for(int j = 0; j < n; j++)
        {
            if(i == j) city[i][j] = 0;
            else city[i][j] = city[j][i] = Max;
        }
        for(int i = 0; i < m; i++)
        {
            int n1, n2, k;
            cin >> n1 >> n2 >> k;
            if(city[n1][n2] > k)//注意重边的问题
                city[n1][n2] = city[n2][n1] = k;
        }
        memset(visit, false, sizeof(visit));
        int start, fin;
        cin >> start >> fin;
        visit[start] = true;
        for(int i = 0; i < n; i++)//起点到其他点的距离
            dist[i] = city[start][i];
        path(fin);
        if(dist[fin] < Max) cout << dist[fin] << endl;
        else cout << "-1" << endl;
    }
    return 0;
}

       再来说下 Floyd算法,这是一个O(n^3)的算法,算是动态规划的思想,其他的我觉得就很暴力了,一个城市到另外一所城市最短路径无非两种:1.直接到达,2.经过其他城市间接到达,把每个点都搜一遍答案就出来。唯一要注意的是,途中需要经过的城市的点放在最外一层循环,否则可能会过早的决定最短路径而导致错误。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int MAX = 200;
const int Max = 9999999;
int city[MAX][MAX];
int dist[MAX][MAX], k, n, m;
int main()
{
    while(cin >> n >> m)
    {
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
        {
            if(i == j) city[i][j] = 0;
            else city[i][j] = city[j][i] = Max;
        }
        for(int i = 0; i < m; i++)
        {
            int n1, n2, k;
            cin >> n1 >> n2 >> k;
            if(city[n1][n2] > k)
                city[n1][n2] = city[n2][n1] = k;
        }
        memcpy(dist, city, sizeof(city));
        for(int k = 0; k < n; k++)
        {
            for(int i = 0; i < n; i++)
            {
                for(int j = 0; j < n; j++)
                {
                    dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j]);
                }
            }
        }
        int start, fin;
        cin >> start >> fin;
        if(start == fin) cout << "0" << endl;
        else if(dist[start][fin] < Max) cout << dist[start][fin] << endl;
        else cout << "-1" << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值