机器学习
文章平均质量分 86
翔底
普通的码农,简单的职业生涯
展开
-
机器学习(2):马尔可夫决策过程
1. 马尔可夫决策过程关于马尔可夫决策过程的马尔可夫是什么?马尔可夫是安德烈·马尔科夫(Andrey Markov),他是著名的俄罗斯数学家,以其在随机过程中的工作而闻名。“马尔可夫”通常意味着在当前状态下,未来和过去是独立的。建立Markovian系统的关键思想是无记忆。无记忆是系统历史不会影响当前状态的想法。用概率表示法,无记忆性转化为这种情况。考虑一系列动作产生的轨迹,我们正在寻找当前动作将带给我们的位置。长的条件概率可能看起来像:现在如果系统是Markovian,则历史将全部包含在转载 2021-04-19 09:39:56 · 1084 阅读 · 0 评论 -
机器学习(1):机器学习概述
1. 什么是机器学习机器学习是关于计算机基于数据构建概率模型并运用模型对数据进行预测与分析的一门学科。也成为统计学习。机器学习的研究对象是数据,用于对数据的预测与分析,特别是对未知新数据的预测与分析。机器学习的方法机器学习方法可以概括为:从给定的、有限的、用于学习的训练数据集合出发,假设数据是独立同分布产生的;并且假设要学习的模型属于某个函数的集合,称为假设空间;应用某个评价准则,从假设空间中选取一个最优模型,使它对已知的训练数据及未知的测试数据在给定的评价准则下有最优的预测;最优模型的选取由算法实原创 2021-04-19 09:37:59 · 1265 阅读 · 0 评论