数字图像处理------中值滤波

本文介绍了中值滤波在数字图像处理中的作用,详细阐述了其算法原理,包括3*3领域中求中值的操作,并提供了一个项目工程的链接,探讨了中值滤波对椒盐噪声的抑制效果及其统计特性分析,同时提到了快速算法和VLSI实现。
摘要由CSDN通过智能技术生成
一 中值滤波概念

     中值滤波算法以某像素的领域图像区域中的像素值的排序为基础,将像素领域内灰度的中值代替该像素的值[1];

如:以3*3的领域为例求中值滤波中像素5的值

 

                                                                         图1

1)int pixel[9]中存储像素1,像素2...像素9的值;

2)对数组pixel[9]进行排序操作;

3)像素5的值即为数组pixel[9]的中值pixel[4]。

    中值滤波对处理椒盐噪声非常有效。

二 中值滤波代码实现

项目工程:https://github.com/ranjiewwen/Everyday_Practice/tree/master/MedianFilter/MedianFilter/MedianFilter

//中值滤波:本算法采用3*3的领域范围
void MyImage::MedianFilterOper()
{
    //0. 准备:获取图片的宽,高和像素信息,
    int const num = 3 * 3;
    unsigned char pixel[num] = { 0 }; //保存领域的像素值
    int width = m_bmpInfo.biWidth;
    int height = m_bmpInfo.biHeight;
    int widthbyte = (width * m_bmpInfo.biBitCount / 8 + 3) / 4 * 4;  //保证为4的倍数
    //相对于中心点,3*3领域中的点需要偏移的位置
    int delta[3 * 3][2] = {
        { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -1 }, { 0, 0 }, { 0, 1 }, { 1, -1 }, { 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值