题目来源:https://leetcode.com/problems/friend-circles/description/
题目大意:在有N位同学的班级中,存在着同学们自己的“朋友圈”。在此我们规定朋友是对称的,换句话说,若A是B的朋友,那么B也是A的朋友(如果不对称也是有点恐怖,防火防盗防闺蜜,瑟瑟发抖)。再者,朋友间具有传递性,即若A是B的朋友,B是C的朋友,那么A、C互为朋友。
用N*N矩阵M代表同学间的友谊情况,M[i][j] = 1代表第i个同学和第j个同学间存在朋友关系,求出该班级内“朋友圈”的个数。
其实题目的提示很明显了。“有N位同学的班级”、“用N*N矩阵M代表同学间的友谊情况”暗示了这是一道与图有关的题目,以每个同学作为顶点,若两两为朋友,则这两个顶点存在边,而且是无向边。
那么问题简化成了,找出无向图中连通图的个数。
那就很简单了。判断是否连通有很多种方法,这里就用刚刚学习的dfs作为课后复习吧。找出连通图的个数也很好处理,只要把visited数组遍历一遍,若visited[i] == 0则代表该点没走过,可以从该点开始进行一次dfs。最后看看一共进行了几次dfs就是有几块连通图了。
#define NMAX 2000
int visited[NMAX] = {0};
void DFS(int** M, int MRowSize, int MColSize, int v) {
visited[v] = 1; // begin with v
for (int i = 0; i < MRowSize; i++) {
if (M[v][i] != 0){
if (visited[i] == 0) DFS(M, MRowSize, MColSize, i); //recursion
}
}
}
int findCircleNum(int** M, int MRowSize, int MColSize) {
for (int i = 0; i < NMAX; i++) visited[i] = 0; // (**)
int count = 0;
for (int i = 0; i < MRowSize; i++) {
int flag;
if (visited[i] == 0) {
count++;
DFS(M, MRowSize, MColSize, i);
}
}
return count;
}
这是做到的最直白的一道medium了,很是开心。
当然中间也bug了一下,一开始忘记写(**)的部分。如果有很多样例一起测试,那么不清空visited数组是不行哒。给自己提个醒吧。
国庆快乐呀~(づ ̄ 3 ̄)づ