关于统计学中q-q图为什么正态分布是一条直线(R语言绘图说明)

本文详细介绍了Q-Q图的概念及其在验证数据是否符合正态分布中的应用。通过数学推导展示了如何从样本数据出发绘制Q-Q图,并解释了在正态分布条件下Q-Q图呈现出直线特性的原因。

q-q图的概念说明:百度百科-验证

标准正态分布绘制代码:

x<-seq(-4,4,0.01)
plot(x,dnorm(x),type='l')

样本分布:

上图中的曲线就是对样本直方图平滑后得到的,设这条曲线的函数式为:y=f(x)

如果样本是按正态分布的,那么f(x)即是一个正态分布的概率密度函数。根据正态分布的特性,我们又可以推导出:

y = f( (x-m)/std ) 就是标准正态分布的概率密度函数。其中m为样本均值,std为样本标准差。

q-q图中分位数的概念,其实就是找出样本中每一个值对应标准正态分布的x值

设标准正态分布的概率密度函数为 y= f(n),既然这些值一一对应(即f(x)积分=f(n)积分),则有:

(x-m)/std=n

即:x=n*std+m 

这是一条斜率为样本标准差,截距为m的直线。

如果样本真的是正态分布,那么在q-q图中所有点连成的线自然满足上述等式,并近似于一条直线。

在R语言中, q-q图还有95%置信区间, 哪位要是知道这两根虚线是怎么得到的,请不吝赐教,谢谢。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱知菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值