q-q图的概念说明:百度百科-验证
标准正态分布绘制代码:
x<-seq(-4,4,0.01)
plot(x,dnorm(x),type='l')

样本分布:

上图中的曲线就是对样本直方图平滑后得到的,设这条曲线的函数式为:y=f(x)
如果样本是按正态分布的,那么f(x)即是一个正态分布的概率密度函数。根据正态分布的特性,我们又可以推导出:
y = f( (x-m)/std ) 就是标准正态分布的概率密度函数。其中m为样本均值,std为样本标准差。
q-q图中分位数的概念,其实就是找出样本中每一个值对应标准正态分布的x值
设标准正态分布的概率密度函数为 y= f(n),既然这些值一一对应(即f(x)积分=f(n)积分),则有:
(x-m)/std=n
即:x=n*std+m
这是一条斜率为样本标准差,截距为m的直线。
如果样本真的是正态分布,那么在q-q图中所有点连成的线自然满足上述等式,并近似于一条直线。
在R语言中, q-q图还有95%置信区间, 哪位要是知道这两根虚线是怎么得到的,请不吝赐教,谢谢。
本文详细介绍了Q-Q图的概念及其在验证数据是否符合正态分布中的应用。通过数学推导展示了如何从样本数据出发绘制Q-Q图,并解释了在正态分布条件下Q-Q图呈现出直线特性的原因。
1万+

被折叠的 条评论
为什么被折叠?



