成功了!|| Poetry安装pytorch || 整理自github项目Poetry下的issue

在使用Poetry安装pytorch的时候,常常会遇到各种问题:首先是使用add添加时,会说只有torch没有什么pytorch,很显然,它是直接针对包的,第二点是,如果是一台没有nvidia显卡的机器,由于poetry没有找到适配的cuda,它会从最高版本开始一遍遍地尝试安装cuda,即使添加了清华镜像也还是慢得可怜,最重要的是,不知道在终点会不会是一个“错误”。因此,在poetry的项目下面也有人针对这个问题展开了讨论,下面是一个比较详尽的使用poetry安装的方式。

Instructions for installing PyTorch #6409

Instructions for installing PyTorch · Issue #6409 · python-poetry/poetry · GitHub

选项一:选择一个你需要的特定版本

你需要选择所需的特定wheel。这个网址https://download.pytorch.org/whl/torch_stable.html里面选。例如,如果您想要CUDA 11.6、Python 3.10和Windows,请在该页面上搜索cu116-cp310-cp310-win_amd64.whl以查看torch、torchhave和torchvision的匹配项。

那么你写的pyproject,toml应该长这样

[tool.poetry.dependencies]
python = "^3.10"
numpy = "^1.23.2"
torch = { url = "https://download.pytorch.org/whl/cu116/torch-1.12.1%2Bcu116-cp310-cp310-win_amd64.whl"}
torchaudio = { url = "https://download.pytorch.org/whl/cu116/torchaudio-0.12.1%2Bcu116-cp310-cp310-win_amd64.whl"}
torchvision = { url = "https://download.pytorch.org/whl/cu116/torchvision-0.13.1%2Bcu116-cp310-cp310-win_amd64.whl"}

但是这种下载方式并不可靠,这位兄弟说下载了很多个GB的文件来试,看来并不合适。

选项二:设置次级源。

代码一看就懂,就不描述了。

[tool.poetry.dependencies]
python = "^3.10"
numpy = "^1.25.2"
torch = { version = "1.12.1", source="torch"}
torchaudio = { version = "0.12.1", source="torch"}
torchvision = { version = "0.13.1", source="torch"}

[[tool.poetry.source]]
name = "torch"
url = "https://download.pytorch.org/whl/cpu/"
priority = "supplemental"

这里实际上设置的是补充源,因为secondary这个优先级已经不使用了。

但是经过我亲身测试,这个工具依然会下载大量的包下来,我也就不敢在自己的电脑上再使用,打断了。或许我会用云平台的电脑测试一下吧。

反转

“结论就是,当前阶段的poetry对管理torch的功能并不好,毕竟它不是发布在pypi上,而是有自己的通道。所以还是老老实实用pip管理环境吧!“ ——2023.8.4

离谱了啊,在平台上尝试成功!

 我看不懂,但我大受震撼,我在我本地也来一遍!但是说实话,感觉有些玄学,在云平台上东的时候,它并没有下载些多余的东西出来,搞不明白。

把自己的toml文件在下面贴一下,方便有人想尝试。

[tool.poetry]
name = "work"
version = "0.1.0"
description = ""
authors = ["zhaocake"]
readme = "README.md"

[tool.poetry.dependencies]
python = "^3.9"
numpy = "^1.25.2"
torch = { version = "1.12.1", source="torch"}
torchaudio = { version = "0.12.1", source="torch"}
torchvision = { version = "0.13.1", source="torch"}
 
[[tool.poetry.source]]
name = "torch"
url = "https://download.pytorch.org/whl/cpu/"
priority = "supplemental"


[[tool.poetry.source]]
name = "mirrors"
url = "https://pypi.tuna.tsinghua.edu.cn/simple/"
priority = "default"

[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

要在自己的电脑上使用PyCharm训练YOLOv5模型,你需要按照以下步骤进行: 1. **安装必要的库和软件**: - **Python**:确保已安装Python,版本建议3.6或更高。你可以通过官网下载并设置环境变量。 - **PyTorch**:YOLOv5是基于PyTorch的,所以先安装PyTorch及其CUDA支持(如果你的电脑有GPU的话)。 - **torchvision**:PyTorch的一个子模块,用于图像处理。 - **pip**:Python的包管理工具,用于安装其他依赖项。 - **Git**:用于从GitHub或其他版本控制仓库克隆YOLOv5的代码库。 2. **下载YOLOv5源码**: - 打开命令行终端或PowerShell,使用`git clone https://github.com/ultralytics/yolov5.git`命令克隆YOLOv5的GitHub仓库到你的电脑上。 3. **进入项目目录**: ``` cd yolov5 ``` 4. **安装依赖项**: - 进入`pyproject.toml`文件所在的目录(默认在根目录下),然后使用`poetry install` 或者 `pip install -r requirements.txt` 来安装所有必要的Python库。 5. **安装PyCharm**: 如果你还未安装PyCharm,可以从PyCharm官网下载适用于你操作系统的安装包,并按指示完成安装。 6. **打开PyCharm并创建新项目**: - 打开PyCharm,点击"Create New Project",选择"Python"模板。 - 导航到YOLOv5项目的根目录,作为项目的源码目录。 7. **配置项目**: - 在PyCharm中,添加Python虚拟环境(如果有需要),并在该环境中激活。 - 将YOLOv5的路径设为项目源码,以便PyCharm能识别和导航。 8. **运行训练脚本**: - 在PyCharm中找到训练相关的脚本,比如`train.py`,右键单击并选择"Run 'train.py'",开始训练模型。 注意:训练深度学习模型可能会消耗大量计算资源和时间,因此可能需要耐心等待,尤其是对于复杂的任务或大规模的数据集。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

早上真好

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值