事件发生的概率
这一次的笔记做的相当晚了,一方面有自己事件规划不合理的原因,另一方面,自己也有了一些更多的想法。其实这也是在意料之中的,随着事件的推移,我必然不可能只专注与课程内的内容与视觉组的任务,要想让自己有更多的提升,继续折腾是在所难免且必要的。但是还是那个不变的中心——为技术做博客和与理论做博客在知识分享与自我巩固方面的差别并不大,因此继续把课程笔记博客写下去对我来说是有必要且有效的
1 频率及性质
首先我们可以看到频率的定义,在n次重复实验中,若事件A发生了k次,则称k为事件A发生的頻数,称 k n \frac{k}{n} nk为事件A发生的频率,记为 f n ( A ) = k n f_n(A)=\frac{k}{n} fn(A)=nk。
由这个定义我们可以比较容易地得到关于频率的几个性质。这里就不作赘述了。
频率在一定程度上可以反映事件发生的可能性的大小。但是另一方面频率具有不客观性。
其实在这里我感受到自己出现了一个问题了。我进行的是关于书籍结论的摘要,而不是对书籍或者是老师授课的思考。一方面,这节课是前天上的;另一面,上这堂课的时候家里面有些事情,我并没能好好听课。同时,在我进行文档敲键盘的过程中,我也没有融入自己的思考,这无疑是非常要不得的。
如上文所言,我并不是要写一个知识总结,比起总结,它更接近一个反思或者说是思路的记录。我要进行记录的应该只是一些陌生的名词和课程的感受
事件的频率叫做事件的统计概率。
2 概率的公理化定义及性质
首先是满足三个条件就可以称为概率。
第一是非负,第二是全集(必然事件)概率为1,第三是具有可列可加性。
这里应该是需要对可列可加性进行一些说明,其实也就是字面意思。可列个事件的分别的概率相加与他们的和事件的概率是相等的。
然后我们来看看它们的性质。主要用文字来复述符号,体现理解。
第一,不可能事件的概率为零
第二,可列可加性的一个弱化版,是有限个的。有限个一定是可列的,但是可列不见得是有限的。
第三,互为对立事件的概率相加为1,从有限可加性(上一个)推出的。
第四,如果B事件会导致A事件的发生,A差B的概率就等于A差AB同时发生的概率。并且A的概率比B的概率大。
第五,从第四立刻就得到的,任意事件的概率都是不超过1的。
第六,一个经典的小学时候的维恩图,小学的解释是重叠的部分多减了一次,所以要加回来。