导读:
本文转自
http://blog.chinaunix.net/u2/65170/showart_514684.html
组合算法
本程序的思路是开一个数组,其下标表示1到m个数,数组元素的值为1表示其下标
代表的数被选中,为0则没选中。
首先初始化,将数组前n个元素置1,表示第一个组合为前n个数。
然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为
“01”组合,同时将其左边的所有“1”全部移动到数组的最左端。
当第一个“1”移动到数组的m-n的位置,即n个“1”全部移动到最右端时,就得
到了最后一个组合。
例如求5中选3的组合:
|
全排列算法
从1到N,输出全排列,共N!条。
分析:用N进制的方法吧。设一个N个单元的数组,对第一个单元做加一操作,满N进
一。每加一次一就判断一下各位数组单元有无重复,有则再转回去做加一操作,没
有则说明得到了一个排列方案。
/*****以下内容由busycai添加: *****/
例如:求1-3的全排列,共3!条
设数组初始状态为0 0 0,以下
为计算全排列的步骤:
0 0 0 +1
1 0 0 +1
2 0 0 +1
3 0 0 满3进1 ->
0 1 0 +1
1 1 0 +1
2 1 0 +1
3 1 0 满3进1 ->
0 2 0 +1
1 2 0 +1
2 2 0 +1
3 2 0 满3进1 ->
0 3 0 满3进1 ->
0 0 1 +1
1 0 1 +1
2 0 1 +1
3 0 1 满3进1 ->
0 1 1 +1
1 1 1 +1
2 1 1 +1
3 1 1 满3进1 ->
0 2 1 +1
1 2 1 +1
2 2 1 +1
3 2 1 满3进1 ->
0 3 1 满3进1 ->
0 0 2 +1
1 0 2 +1
2 0 2 +1
3 0 2 满3进1 ->
0 1 2 +1
1 1 2 +1
2 1 2 +1
3 1 2 满3进1 ->
0 2 2 +1
1 2 2 +1
2 2 2 +1
3 2 2 满3进1 ->
0 3 2 满3进1 ->
0 0 3 满3进1 ->
0 0 0
共6个YES,每一个对应一种排列。
本文转自
http://blog.chinaunix.net/u2/65170/showart_514684.html