SPSS + AMOS 结构方程模型(SEM)

本文详细介绍了使用SPSS和AMOS进行结构方程模型(SEM)的学习过程,包括信度效度检验的步骤。作者提到,信度通过克隆巴赫系数评估,一般要求大于0.7;效度则通过KMO和巴特利特球形检验,理想情况下KMO应大于0.7。此外,还讨论了标准负荷、组合信度(CR)和平均方差提取量(AVE)在判断量表质量中的作用。最后,文章指出,SEM分析的重点在于理解潜变量之间的关系并进行参数调整,以确保模型适配性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

抽空学习了一下结构方程模型,主要运用的软件是SPSS+AMOS,感觉之后能用得上,现将整体思路结构梳理如下,方便日后查阅。问卷采取 Likert 五级量表,1-5依次代表“非常不同意”到“非常同意”。

信度效度检验

问卷设计好后必不可少的一环,将Excel数据整理如下,并导入SPSS中。
不同颜色代表问卷的不同子主题,将其导入SPSS中,分子主题进行信度效度检验。
在这里插入图片描述
可以用打靶来说明信度和效度
信度——所检测的东西是不是稳定的;
效度——测度到了想测度的部分(是否打到了靶心)
在这里插入图片描述

① 信度检验——克隆巴赫系数

一个潜变量会得到一个克隆巴赫系数的值,把题项标号选进去就行。
在这里插入图片描述
一般来说克隆巴赫系数要 > 0.7才算信度较好。

② 效度检验——KMO和巴特利特球形检验

在这里插入图片描述
一般来说KMO要 > 0.7才算效度较好(同时巴特利特球形检验p = 0.000为佳)

③ 标准负荷(主要解读的是旋转后的成分矩阵)

在这里插入图片描述

在这里插入图片描述
表明四个组别是不同的,确实是测量的不同的东西,和我们预想的一样。

④ 组合信度(CR)和平均方差提取量(AVE)

这个直接用SPSS做不出来,需要用到一个小工具,将潜在变量题项选择好,然后将其对应的标准负荷填进去即可算出。
在这里插入图片描述所得结果CR > 0.7,AVE > 0.5,说明量表具有较好的内部一致性和收敛效度,AVE平方根值大于潜变量间两两相关系数,说明量表有很好的区别效度。

至此便完成了问卷的检验部分,接下来即可以开始相关性系数的分析,以及AMOS分析操作。
在这里插入图片描述
整体来说绘制还是比较简便的,但是这个潜变量之间的关系线实在是太丑,而且也没找到解决方法(如果有大神知道的话麻烦评论区留言,感激不尽),同时图片也没有居中(如果按照这样复制图片只有在白纸上的部分会被复制下来,点击倒数第三行中间红星文本会将图片进行调整居中,但是里面的字又看不清了,无语无语)

点选第一个①会把小圆圈里没有标注的数据进行标注
在进行数据分析时需要点选三个圈圈(默认只点选第一个)
点选红色上箭头会将数据(系数啥的,看不懂但可以变得高大上)显示在图中
在这里插入图片描述
几个常用的键
在这里插入图片描述
所得结果分析,要通过上述验证才能算方程结构良好(如果有一两个值不符合但接近也行):
在这里插入图片描述
假设验证:
在这里插入图片描述
**越多表示越能支持假设。如果是正数即表示正向促进作用,如果是负数则表示负向影响,如果假设不成立则表示无显著影响。

结构方程模型更重要的是如果不满足适配之后如何来进行参数的调整,这次毕设写作过程中运气较好没有出现这个问题,下次若出现了再进行补充

### 如何在SPSS中实现结构方程模型 (SEM) 分析 #### 3.1 安装 AMOS 插件 IBM SPSS Statistics 并不直接支持 SEM 的功能,但 IBM 提供了一个名为 AMOS 的插件专门用于执行此类高级统计分析。AMOS 是 “Analysis of Moment Structures”的缩写,它允许用户构建复杂的路径图并估计潜在变量之间的关系。 要安装 AMOS,在购买了合法授权之后,可以从 IBM 官网下载相应版本并与现有的 SPSS 套装集成[^1]。 #### 3.2 数据准备 确保数据文件格式兼容于 AMOS 使用;通常情况下 .sav 文件可以直接被读取。如果数据来自其他来源,则可能需要转换成合适的形式再导入到程序当中。对于 `survey_data.sav` 这样的数据集来说,应该提前清理好缺失值等问题以便顺利开展后续工作[^3]。 #### 3.3 构建测量模型 打开 AMOS Graphics 后会看到一个空白画布用来绘制图形化表示的研究假设。按照理论框架定义观测指标与对应的潜变量间联系: - **态度(Attitude)** - **行为意向(Behavioral Intention)** - **实际行为(Actual Behavior)** 每一对显性和隐性的关联都需用箭头连接起来形成初步的概念地图。 #### 3.4 设置参数约束条件 当完成基本架构搭建以后,还需要设定一些必要的限制来提高模型拟合度以及识别性。这一步骤涉及到固定某些路径系数为特定数值或是让它们相等从而减少自由度差异带来的不确定性因素影响最终结果准确性。 #### 3.5 执行计算过程 点击工具栏上的“Calculate Estimates”按钮启动迭代算法求解最优解的过程。期间可能会遇到收敛失败的情况此时应调整初始猜测值重新尝试直至获得满意解答为止。 #### 3.6 解释输出报告 成功运行完毕后将会自动生成一系列表格和图表帮助评估所建立的数学表达式的合理性及其背后隐藏的意义所在。重点关注 Goodness-of-fit indices 和 standardized path coefficients 等关键性能评价标准以判断当前假说是否成立。 ```spss * 此处展示的是伪代码,因为实际上 AMOS 不是基于命令语法驱动而是图形界面操作 *. ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人生苦短我愛Python

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值