Prime XOR Coloring

题源

题目

Prime XOR Coloring
每次测试时间限制:2秒
每个测试的内存限制:256 MB
给定一个有 n 个顶点的无向图,编号从 1 到 n。当且仅当 u 为素数时,顶点 u 和 v 之间存在边,其中 表示按位异或运算符。
使用最少数量的颜色为图的所有顶点着色,使得由边直接连接的两个顶点没有相同的颜色。
输入
每个测试包含多个测试用例。第一行包含测试用例的数量 t (1 < t < 500)。测试用例的描述如下。
唯一的一行包含一个整数 n (1 < n < 2e5) - 图中的顶点数。
保证所有测试用例的n之和不超过2e5。
输出
对于每个测试用例,输出两行。
第一行应包含单个整数 k (1 ≤ k ≤ n),即所需的最小颜色数。
第二行应包含 n 个整数 C1, C2,…, Cn (1 ≤ Ci <k) - 每个顶点的颜色。如果有多个解,输出任意一个。

范例输入

6
1
2
3
4
5
6

范例输出:

1
1
2
1 2
2
1 2 2
3
1 2 2 3
3
1 2 2 3 3
4
1 2 2 3 3 4

题目分析

重点就在于这个两个节点iXORj的值如果是质数那就存在一条边连接i和j
因此我们思考什么样的两个数XOR的结果是质数,或者,去思考质数的二进制表达有什么特点。
经过思考(打表)我们发现,所有的质数,在二进制位最后两位(2^0, 2^1)上至少有一位为1,也就是说最后两位不能都为0(不然就是4的倍数了)。但是并不是所有最后两位至少一位为1的数字他都是质数。
定义效果 f ( i , j ) = ( i ⊕ j ) ∧ 3 f(i,j)=(i\oplus j) \land 3 fij)=(ij)3
由上可以推出来,如果我保证所有 满足 f ( i , j ) ! = 0 的组合 ( i , j ) 中的 i 和 j 颜色不同, 满足f(i,j)!=0的组合(i,j)中的i和j颜色不同, 满足f(i,j)=0的组合(i,j)中的ij颜色不同,那么一定能够覆盖那些中间有路径的(i,j)组合。也就保证了这个图中由边直接连接的两个顶点没有相同的颜色。

然而我发现如果 i ∧ 3 = = j ∧ 3 , 那么 ( i ⊕ j ) m o d 4 = = 0 即 i 与 j 之间无直接路径 i\land 3 == j\land 3,那么(i\oplus j) mod 4 ==0即i与 j之间无直接路径 i3==j3,那么(ij)mod4==0ij之间无直接路径
因此只需要给i节点赋予颜色种类为i^3+1那么就可以保证了同个颜色种类之间无直接路径,因此无论n多大,颜色种类最多为4种。

解答

完整代码

key part
码风模范jiangly

constexpr int  arr[][7]={
	{},
	{1	},
	{1, 2}	,
	{1, 2, 2},
	{1, 2, 2, 3},
	{1, 2, 2, 3,3},
	{1, 2, 2, 3,3, 4},
};
inline void solve() {
	int n;cin>>n;
	if(n<=6){
		int ans=*max_element(arr[n],arr[n]+n);
		cout<<ans<<endl;
		for (int i=0;i<n;i++){
			cout<<arr[n][i]<<" \n"[i==n-1];
		}
	}else{
		cout<<4<<endl;
		for(int i=1;i<=n;i++){
			cout<<(i&3)+1<<" \n"[i==n];
		}
	}
}

  • 14
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值