组合数的低复杂度运算

题源

题目

F. 预期中位数
每次测试的时间限制:3 秒
每次测试的内存限制:256 兆字节
Arul 有一个长度为 n 的二进制数组* a。
他将取该数组中所有长度为 k(k 为奇数)的子序列并找到它们的中位数。
所有这些值的总和是多少?
由于这个和可能非常大,因此输出它对 109° + 7 取模的结果。换句话说,打印该和除以 10° + 7 后的余数。
二进制数组是仅由零和一组成的数组。
† 如果数组 b 可以通过从 a 中删除几个(可能是零个或全部)元素来获得,则数组 b 是数组 a 的子序列。子序列不必是连续的。
奇数长度 k 的数组的中位数是排序后的第 +1 个元素。2
输入第一行包含一个整数 t(1 ≤ t ≤ 104)表示测试用例的数量。
每条测试用例第一行包含两个整数n和k(1≤k≤n≤2105,k为奇数),分别为数组的长度和子序列
每个测试用例的第二行包含 n 个整数 ai (0 < a < 1)——数组的元素。
保证所有测试用例的 n 之和不超过 2.105。
输出
对于每个测试用例,打印模 109 + 7 的总和。

题目分析

基础的组合数问题,不需要多少分析,针对每一种1占据多数的子字符串情况进行组合数目加和就可以主要是算法空间时间复杂度的问题

解答

由于不知道更优时间复杂度的算法+懒,我一直在套用旧的组合数板子
时间空间复杂度都是 O ( n 2 ) 时间空间复杂度都是O(n^2) 时间空间复杂度都是O(n2)

ll Mod;
const ll N = 5e3 + 100;
ll comb[N][N];
auto setMod = [](ll n = 1e9 + 7) {
	Mod = n;
};
void get_comb(int n) {
	for (int i = 0; i <= n; i++)
		for (int j = 0; j <= i; j++)
			comb[i][j] = (0 < j && j < i) ? (comb[i - 1][j - 1] + comb[i - 1][j]) % Mod : 1;
}
int C(int n, int m) {
	if (n == m && m == -1) return 1; //* 隔板法特判
	if (n < m || m < 0) return 0;
	return comb[n][m];
}
/// 加法递推求组合数,O(n^2),模数非素数时可用

完整代码

新的板子
O ( log ⁡ n )时间复杂度(如果不看初始化 O ( n ) 的话) O ( n )空间时间复杂度的算法 O(\log n)时间复杂度(如果不看初始化O(n)的话)\newline O(n)空间时间复杂度的算法 Ologn)时间复杂度(如果不看初始化O(n)的话)On)空间时间复杂度的算法

ll Mod = 1e9 + 7;
const ll N = 3e5 + 7;

auto setMod = [](ll n = 1e9 + 7) {
	Mod = n;
};

//快速幂模板fusk power template
ll qpow(ll a, ll k) {
	ll ans = 1;
	while (k) {
		if (k & 1)
			ans = 1LL * a * ans % Mod;
		k >>= 1;
		a = 1LL * a * a % Mod;
	}
	return ans;
}
//组合数模板combination number template

vector<ll> fact(N, 1);
void ini(ll n) {
	rep(i, 1, n) {
		fact[i] = (fact[i - 1] * i) % Mod;
	}
}
ll C(ll n, ll k) {
	if (n < k)
		return 0ll;
	return fact[n] * qpow((fact[n - k] * fact[k]) % Mod, Mod - 2) % Mod;
}

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值