python -函数了解--note

 

定义函数

函数定义示例:

def cylinder_volume(height, radius):
    pi = 3.14159
    return height * pi * radius ** 2

定义 cylinder_volume 函数后,我们可以如下所示地调用该函数。

cylinder_volume(10, 3)

函数定义包含几个重要部分。

函数头部

我们从函数头部开始,即函数定义的第一行。

  1. 函数头部始终以关键字 def 开始,表示这是函数定义。
  2. 然后是函数名称(在此例中是 cylinder_volume,因为函数名是要一个单词,所以需要用_进行连接),遵循的是和变量一样的命名规范。你可以在本页面下方回顾下命名规范。
  3. 名称之后是括号,其中可能包括用英文逗号分隔的参数(在此例中是 height 和 radius)。形参(或实参)是当函数被调用时作为输入传入的值,用在函数主体中。如果函数没有参数,这些括号留空。
  4. 头部始终以英文冒号 : 结束。

函数主体

函数的剩余部分包含在主题中,也就是函数完成操作的部分。

  1. 函数主体是在头部行之后缩进的代码。在此例中是定义 π 和返回体积的两行代码。
  2. 在此主体中,我们可以引用参数并定义新的变量,这些变量只能在这些缩进代码行内使用。
  3. 主体将经常包括 return 语句,用于当函数被调用时返回输出值。return 语句包括关键字 return,然后是经过评估以获得函数输出值的表达式。如果没有 return 语句,函数直接返回 None(例如内置 print() 函数)。

函数的命名规范

函数名称遵守和变量一样的命名规范。

  1. 仅在函数名称中使用普通字母、数字和下划线。不能有空格,需要以字母或下划线开头。
  2. 不能使用在 Python 中具有重要作用的保留字或内置标识符,我们将在这门课程中学习这方面的知识。要了解 python 保留字列表,请参阅此处
  3. 尝试使用可以帮助读者了解函数作用的描述性名称。

默认参数

我们可以向函数中添加默认参数,以便为在函数调用中未指定的参数提供默认值。

def cylinder_volume(height, radius=5):
    pi = 3.14159
    return height * pi * radius ** 2

在上述示例中,如果在函数调用中忽略了 radius,则将该参数设为 5。如果我们调用 cylinder_volume(10),该函数将使用 10 作为高度,使用 5 作为半径。但是,如果调用 cylinder_volume(10, 7),7 将覆盖默认的值 5。

此外注意,我们按照位置向参数传递值。可以通过两种方式传递值:按照位置和按照名称。下面两个函数的效果是一样的。

cylinder_volume(10, 7)  # pass in arguments by position
cylinder_volume(height=10, radius=7)  # pass in arguments by name

 

变量作用域

变量作用域是指可以在程序的哪个部分引用或使用某个变量。

在函数中使用变量时,务必要考虑作用域。如果变量是在函数内创建的,则只能在该函数内使用该变量。你无法从该函数外面访问该变量。

# This will result in an error
def some_function():
    word = "hello"

print(word)

这意味着你可以为在不同函数内使用的不同变量使用相同的名称。

# This works fine
def some_function():
    word = "hello"

def another_function():
    word = "goodbye"

像这样在函数之外定义的变量依然可以在函数内访问。

# This works fine
word = "hello"

def some_function():
    print(word)

print(word)

注意,我们可以在此函数内以及函数外输出 word。作用域对理解信息在用 Python 和任何编程语言编写的程序中的传递方式来说很关键。

关于变量作用域的更多信息

在编程时,你经常会发现相似的想法不断出现。你将使用变量进行计数、迭代和累积要返回的值。为了编写容易读懂的代码,你会发现你需要对相似的想法使用相似的名称。一旦你将多段代码放到一起(例如,一个脚本中有多个函数或函数调用),你可能需要为两个不同的概念使用相同的名称。

幸运的是,你不需要不断想出新的名称。可以为对象重复使用相同的名称,只要它们位于不同的作用域即可。

良好实践:建议将变量定义在所需的最小作用域内。虽然函数_可以_引用在更大的作用域内定义的变量,但是通常不建议这么做,因为如果程序有很多变量,你可能不知道你定义了什么变量。

下一项

解决方案:变量作用域

更好的编写方式为:

egg_count = 0

def buy_eggs(count):
    return count + 12  # purchase a dozen eggs

egg_count = buy_eggs(egg_count)

将这段代码与原始代码段进行比较:

egg_count = 0

def buy_eggs():
    egg_count += 12 # purchase a dozen eggs

buy_eggs()

下面的代码段导致 UnboundLocalError

在上个视频中,你发现在函数内,我们可以成功地输出外部变量的值。因为我们只是访问该变量的值。当我们尝试将此变量的值更改重新赋值为另一个值时,我们将遇到错误。Python 不允许函数修改不在函数作用域内的变量。

但是上面的原则仅适用于整数和字符串,列表、字典、集合、类中可以在子程序(子函数)中通过修改局部变量达到修改全局变量的目的。

文档

文档使代码更容易理解和使用。函数尤其容易理解,因为它们通常使用文档字符串,简称 docstrings。文档字符串是一种注释,用于解释函数的作用以及使用方式。下面是一个包含文档字符串的人口密度函数。

def population_density(population, land_area):
    """Calculate the population density of an area. """
    return population / land_area

文档字符串用三个引号引起来,第一行简要解释了函数的作用。如果你觉得信息已经足够了,可以在文档字符串中只提供这么多的信息;一行文档字符串完全可接受,如上述示例所示。

def population_density(population, land_area):
    """Calculate the population density of an area.

    INPUT:
    population: int. The population of that area
    land_area: int or float. This function is unit-agnostic, if you pass in values in terms
    of square km or square miles the function will return a density in those units.

    OUTPUT: 
    population_density: population / land_area. The population density of a particular area.
    """
    return population / land_area

如果你觉得需要更长的句子来解释函数,可以在一行摘要后面添加更多信息。在上述示例中,可以看出我们对函数的参数进行了解释,描述了每个参数的作用和类型。我们经常还会对函数输出进行说明。

文档字符串的每个部分都是可选的。但是,提供文档字符串是一个良好的编程习惯。你可以在此处详细了解文档字符串惯例。

下一项

Lambda 表达式

你可以使用 Lambda 表达式创建匿名函数,即没有名称的函数。lambda 表达式非常适合快速创建在代码中以后不会用到的函数。尤其对高阶函数或将其他函数作为参数的函数来说,非常实用。

我们可以使用 lambda 表达式将以下函数

def multiply(x, y):
    return x * y

简写为:

double = lambda x, y: x * y

Lambda 函数的组成部分

  1. 关键字 lambda 表示这是一个 lambda 表达式。
  2. lambda 之后是该匿名函数的一个或多个参数(用英文逗号分隔),然后是一个英文冒号 :。和函数相似,lambda 表达式中的参数名称是随意的。
  3. 最后一部分是被评估并在该函数中返回的表达式,和你可能会在函数中看到的 return 语句很像。

鉴于这种结构,lambda 表达式不太适合复杂的函数,但是非常适合简短的函数。

练习:Lambda 与 Map

map() 是一个高阶内置函数,接受函数和可迭代对象作为输入,并返回一个将该函数应用到可迭代对象的每个元素的迭代器。下面的代码使用 map() 计算 numbers 中每个列表的均值,并创建列表 averages。测试运行这段代码,看看结果如何。

numbers = [
              [34, 63, 88, 71, 29],
              [90, 78, 51, 27, 45],
              [63, 37, 85, 46, 22],
              [51, 22, 34, 11, 18]
           ]

mean=lambda num_list:sum(num_list) / len(num_list)

averages = list(map(mean, numbers))
print(averages)


output:[57.0, 58.2, 50.6, 27.2]

练习:Lambda 与 Filter

filter() 是一个高阶内置函数,接受函数和可迭代对象作为输入,并返回一个由可迭代对象中的特定元素(该函数针对该元素会返回 True)组成的迭代器。下面的代码使用 filter() 从 cities 中获取长度少于 10 个字符的名称以创建列表 short_cities。测试运行这段代码,看看结果如何。

通过将 is_short 函数替换为在 filter() 的调用中定义的 lambda 表达式,重写这段代码,使代码更简练。

练习解决方案:Lambda 与 Filter

cities = ["New York City", "Los Angeles", "Chicago", "Mountain View", "Denver", "Boston"]

short_cities = list(filter(lambda x: len(x) < 10, cities))
print(short_cities)

输出:

['Chicago', 'Denver', 'Boston']

迭代器和生成器

迭代器是每次可以返回一个对象元素的对象,列表是最常见的可迭代对象之一。我们到目前为止使用的很多内置函数(例如 enumerate)都会返回一个迭代器。

迭代器是一种表示数据流的对象。这与列表不同,列表是可迭代对象,但不是迭代器,因为它不是数据流。

生成器是使用函数创建迭代器的简单方式。也可以使用定义迭代器,更多详情请参阅此处

下面是一个叫做 my_range 的生成器函数,它会生成一个从 0 到 (x - 1) 的数字流。

def my_range(x):
    i = 0
    while i < x:
        yield i
        i += 1

注意,该函数使用了 yield 而不是关键字 return。这样使函数能够一次返回一个值,并且每次被调用时都从停下的位置继续。关键字 yield 是将生成器与普通函数区分开来的依据。

注意,因为这段代码会返回一个迭代器,因此我们可以将其转换为列表或用 for 循环遍历它,以查看其内容。例如,下面的代码:

for x in my_range(5):
    print(x)

输出:

0
1
2
3
4

 

练习:实现 my_enumerate

 

请自己写一个效果和内置函数 enumerate 一样的生成器函数。

如下所示地调用该函数:

lessons = ["Why Python Programming", "Data Types and Operators", "Control Flow", "Functions", "Scripting"]

for i, lesson in my_enumerate(lessons, 1):
    print("Lesson {}: {}".format(i, lesson))

应该会输出:

Lesson 1: Why Python Programming
Lesson 2: Data Types and Operators
Lesson 3: Control Flow
Lesson 4: Functions
Lesson 5: Scripting
lessons = ["Why Python Programming", "Data Types and Operators", "Control Flow", "Functions", "Scripting"]

def my_enumerate(iterable, start=0):
    count = start
    for element in iterable:
        yield count, element
        count += 1

for i, lesson in my_enumerate(lessons, 1):
    print("Lesson {}: {}".format(i, lesson))

为何要使用生成器?

你可能会疑问,为何要使用生成器,而不使用列表。下面这段摘自 stack overflow 页面 的内容回答了这个问题:

生成器是构建迭代器的 “懒惰” 方式。当内存不够存储完整实现的列表时,或者计算每个列表元素的代价很高,你希望尽量推迟计算时,就可以使用生成器。但是这些元素只能遍历一次。

另一种详细的解释如下(详细说明参见 该 stack overflow 页面。)

由于使用生成器是一次处理一个数据,在内存和存储的需求上会比使用list方式直接全部生成再存储节省很多资源。

由此区别,在处理大量数据时,经常使用生成器初步处理数据后,再进行长期存储,而不是使用 list。因为无论使用生成器还是 list,都是使用过就要丢弃的临时数据。既然功能和结果一样,那就不如用生成器。

但是生成器也有自己的局限,它产生的数据不能回溯,不像list可以任意选择。

练习:Chunker

如果可迭代对象太大,无法完整地存储在内存中(例如处理大型文件时),每次能够使用一部分很有用。

实现一个生成器函数 chunker,接受一个可迭代对象并每次生成指定大小的部分数据。

如下所示地调用该函数:

for chunk in chunker(range(25), 4):
    print(list(chunk))

应该会输出:

[0, 1, 2, 3]
[4, 5, 6, 7]
[8, 9, 10, 11]
[12, 13, 14, 15]
[16, 17, 18, 19]
[20, 21, 22, 23]
[24]
def chunker(iterable, size):
    # Implement function here
     i=0
     for i in range(0,len(iterable),size):
         yield iterable[i:i+size]
        
        


for chunk in chunker(range(25), 4):
    print(list(chunk))

以下是一种实现方式。你可以在此 Stack Overflow 页面上找到该实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ayuelei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值