Course 2 改善深层神经网络 Week 1 零初始化、随机初始化和抑梯度异常初始化(He initialization)

开始之前

选用合适的初始化可以

  • 加速梯度下降的收敛
  • 增加梯度下降的几率,收敛到较低的训练(和泛化)误差

准备数据

导入相关的库

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets

读取数据

def load_dataset(is_plot=True):
    np.random.seed(1)
    train_X, train_Y = sklearn.datasets.make_circles(n_samples=300, noise=.05)
    np.random.seed(2)
    test_X, test_Y = sklearn.datasets.make_circles(n_samples=100, noise=.05)
    # Visualize the data
    if is_plot:
        plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral);
    train_X = train_X.T
    train_Y = train_Y.reshape((1, train_Y.shape[0]))
    test_X = test_X.T
    test_Y = test_Y.reshape((1, test_Y.shape[0]))
    return train_X, train_Y, test_X, test_Y

导入数据并绘制图形边界

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)  # 需要将c=y改为c=np.squeeze(y)
    plt.show()

主文件中读取数据并且绘制图像

plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# 读取并绘制数据,圆圈中的蓝色/红色圆点
train_X, train_Y, test_X, test_Y = load_dataset(is_plot=True)
plt.show() # 显示图像

执行结果:
在这里插入图片描述

三层神经网络来建立一个分类器

我们将要建立一个分类器把蓝点和红点分开,在之前我们已经实现过一个3层的神经网络,我们将对它进行初始化:

我们将会尝试下面三种初始化方法:

  • 初始化为0:在输入参数中全部初始化为0,参数名为initialization = “zeros”,核心代码:parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1]))

  • 初始化为随机数:把输入参数设置为随机值,权重初始化为大的随机值。参数名为initialization = “random”,核心代码:parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10

  • 抑梯度异常初始化:参见梯度消失和梯度爆炸的那一个视频,参数名为initialization = “he”,核心代码:parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1])

前向传播

def sigmoid(x):
    """
    Compute the sigmoid of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(x)
    """
    s = 1 / (1 + np.exp(-x))
    return s

def relu(x):
    """
    Compute the relu of x

    Arguments:
    x -- A scalar or numpy array of any size.

    Return:
    s -- relu(x)
    """
    s = np.maximum(0, x)

    return s

def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.

    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()

    Returns:
    loss -- the loss function (vanilla logistic loss)
    """

    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)

    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)

    return a3, cache

计算成本

def compute_loss(a3, Y):
    """
    Implement the loss function

    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3

    Returns:
    loss - value of the loss function
    """

    m = Y.shape[1]
    logprobs = np.multiply(-np.log(a3), Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    loss = 1. / m * np.nansum(logprobs)

    return loss

反向传播

def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.

    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()

    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache

    dz3 = 1. / m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims=True)

    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims=True)

    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims=True)

    gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}

    return gradients

更新参数

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent

    Arguments:
    parameters -- python dictionary containing your parameters
    grads -- python dictionary containing your gradients, output of n_model_backward

    Returns:
    parameters -- python dictionary containing your updated parameters
                  parameters['W' + str(i)] = ...
                  parameters['b' + str(i)] = ...
    """

    L = len(parameters) // 2  # number of layers in the neural networks

    # Update rule for each parameter
    for k in range(L):
        parameters["W" + str(k + 1)] = parameters["W" + str(k + 1)] - learning_rate * grads["dW" + str(k + 1)]
        parameters["b" + str(k + 1)] = parameters["b" + str(k + 1)] - learning_rate * grads["db" + str(k + 1)]

    return parameters

三层神经网络模型

def model(X, Y, learing_rate=0.01, num_iterations=15000, print_cost=True, initialization="he", is_plot=True):
    '''
    实现三层的神经网络:LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID
    :param X:输入数据,维度为(2,样本数)
    :param Y:标签向量,[0是红点,1是蓝点],维度为(1,样本数)
    :param learing_rate:梯度下降的学习速率
    :param num_iterations:迭代次数
    :param print_cost:是否打印成本值,每迭代1000次打印一次
    :param initialization:字符串类型,初始化的类型("zeros","random" or "he")
    :param is_plot:是否绘制梯度下降的曲线图
    :return:
        parameters:学习后的参数
    '''
    grads = {}  # 梯度值
    costs = []  # 成本
    m = X.shape[1]  # 样本数
    layers_dims = [X.shape[0], 10, 5, 1]  # 三层神经网络

    # 初始化参数的类型
    if initialization == "zeros":
        parameters = initialize_parameters_zeros(layers_dims)
    elif initialization == "random":
        parameters = initialize_parameters_random(layers_dims)
    elif initialization == "he":
        parameters = initialize_parameters_he(layers_dims)
    else:
        print("错误参数,程序退出")  # 保障措施
        exit

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        a3, cache = forward_propagation(X, parameters)
        # 计算成本
        cost = compute_loss(a3, Y)
        # 反向传播
        grads = backward_propagation(X, Y, cache)
        # 更新参数
        parameters = update_parameters(parameters, grads, learing_rate)

        # 记录成本
        if i % 1000 == 0:
            costs.append(cost)
            # 打印成本
            if print_cost:
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 学习完毕,绘制成本函数
    if is_plot:
        plt.plot(costs)
        plt.xlabel("iterations")  # 绘制图像只能用英文
        plt.ylabel("costs")
        plt.title("learning rate=" + str(learing_rate))
        plt.show()

    # 返回学习好的参数
    return parameters

进行预测

def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.

    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model

    Returns:
    p -- predictions for the given dataset X
    """

    m = X.shape[1]
    p = np.zeros((1, m), dtype=np.int)

    # Forward propagation
    a3, caches = forward_propagation(X, parameters)

    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0, i] > 0.5:
            p[0, i] = 1
        else:
            p[0, i] = 0

    # print results
    print("Accuracy: " + str(np.mean((p[0, :] == y[0, :]))))

    return p

绘制决策边界图形

组件

def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.

    Arguments:
    parameters -- python dictionary containing your parameters
    X -- input data of size (m, K)

    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """

    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3 > 0.5)
    return predictions

绘制决策边界图形,需要注意的是,要将c=y改为c=np.squeeze(y)

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)  # 需要将c=y改为c=np.squeeze(y)
    plt.show()

使用0来初始化参数

神经网络中有两种参数需要初始化:

  • 权重矩阵 ( W [ 1 ] , W [ 2 ] , W [ 3 ] , . . . , W [ L − 1 ] , W [ L ] ) (W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]}) (W[1],W[2],W[3],...,W[L1],W[L])
  • 偏置向量 ( b [ 1 ] , b [ 2 ] , b [ 3 ] , . . . , b [ L − 1 ] , b [ L ] ) (b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]}) (b[1],b[2],b[3],...,b[L1],b[L])

实现以下函数将所有参数初始化为零。稍后你会看到它不能很好地工作,因为它不能“破坏对称性”。使用np.zeros(shape=(..,..))初始化参数,注意这里有两层括号.

def initialize_parameters_zeros(layers_dim):
    '''
    将模型参数全部设置为0
    :param layers_dim: 列表,模型的层数对应每一层节点的数
    :return:
         W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
         b1 -- bias vector of shape (layers_dims[1], 1)
         ...
         WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
         bL -- bias vector of shape (layers_dims[L], 1)
    '''
    parameters = {}
    L = len(layers_dim)  # 网络层数,包含了输入层
    for l in range(1, L):  # 1 -> L-1,如果L=4,则只有W1,b1……W3,b3.
        parameters['W' + str(l)] = np.zeros((layers_dim[l], layers_dim[l - 1]))
        parameters['b' + str(l)] = np.zeros((layers_dim[l], 1))

        # 使用断言
        assert (parameters['W' + str(l)].shape == (layers_dim[l], layers_dim[l - 1]))
        assert (parameters['b' + str(l)].shape == (layers_dim[l], 1))
    return parameters

结果分析

训练模型

# 用初始化为0来训练参数
parameters = model(train_X, train_Y, initialization="zeros", is_plot=True)

执行结果

0次迭代,成本值为:0.69314718055994531000次迭代,成本值为:0.6931471805599453
:
:
第13000次迭代,成本值为:0.693147180559945314000次迭代,成本值为:0.6931471805599453

在这里插入图片描述
预测结果

# 预测结果
print("训练集")
predictions_train = predict(train_X, train_Y, parameters)  # 预测测试集
print("测试集")
predictions_test = predict(test_X, test_Y, parameters)  # 预测训练集

执行结果

训练集
Accuracy: 0.5
测试集
Accuracy: 0.5

预测和决策边界

# 绘制决策边界
plt.title("Model with Zeros initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])

plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
plt.show() # 显示图像

执行结果

predictions_train = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0]]
predictions_test = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]

在这里插入图片描述
分类失败,该模型预测每个都为0。通常来说,零初始化都会导致神经网络无法打破对称性,最终导致的结果就是无论网络有多少层,最终只能得到和Logistic函数相同的效果。

使用随机数来初始化参数

为了打破对称性,让我们随机初始化权重。 在随机初始化之后,每个神经元然后可以继续学习其输入的不同功能。 ,您将看到如果权重是随机初始化比较大的参数值。
实现以下函数将权重初始化为大的随机值(按* 10缩放np.random.randn(..,..) * 10),将偏差初始化为零 np.zeros((.., ..))

def initialize_parameters_random(layers_dim):
    '''
    将模型参数随机初始化
    :param layers_dim: 列表,模型的层数对应每一层节点的数
    :return:
         W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
         b1 -- bias vector of shape (layers_dims[1], 1)
         ...
         WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
         bL -- bias vector of shape (layers_dims[L], 1)
    '''
    np.random.seed(3)  # 一定要指定随机种子
    parameters = {}
    L = len(layers_dim)  # 网络层数,包含了输入层
    for l in range(1, L):  # 1 -> L-1,如果L=4,则只有W1,b1……W3,b3.
        parameters['W' + str(l)] = np.random.randn(layers_dim[l], layers_dim[l - 1]) * 10  # 用十倍缩放
        parameters['b' + str(l)] = np.zeros((layers_dim[l], 1))  # zeros需要两层括号,rand()只需要一层

        # 使用断言
        assert (parameters['W' + str(l)].shape == (layers_dim[l], layers_dim[l - 1]))
        assert (parameters['b' + str(l)].shape == (layers_dim[l], 1))
    return parameters

结果分析

训练模型

# 用随机初始化为来训练参数
parameters = model(train_X, train_Y, initialization="random", is_plot=True)

执行结果

0次迭代,成本值为:inf
第1000次迭代,成本值为:0.6250982793959966
:
:13000次迭代,成本值为:0.38498472890970314000次迭代,成本值为:0.3827828308349524

成本值下降
在这里插入图片描述
预测结果

# 预测结果
print("训练集")
predictions_train = predict(train_X, train_Y, parameters)  # 预测测试集
print("测试集")
predictions_test = predict(test_X, test_Y, parameters)  # 预测训练集

执行结果

训练集
Accuracy: 0.83
测试集
Accuracy: 0.86

预测和决策边界

# 绘制决策边界
plt.title("Model with Zeros initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])

plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
plt.show() # 显示图像

执行结果

predictions_train = [[1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1
  1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0
  0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0
  1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0
  0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1
  1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1
  0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1
  1 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1
  1 1 1 1 0 0 0 1 1 1 1 0]]
predictions_test = [[1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1
  0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0
  1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0]]

在这里插入图片描述
我们可以看到误差开始很高。这是因为由于具有较大的随机权重,最后一个激活(sigmoid)输出的结果非常接近于0或1,而当它出现错误时,它会导致非常高的损失。初始化参数如果没有很好地话会导致梯度消失、爆炸,这也会减慢优化算法。如果我们对这个网络进行更长时间的训练,我们将看到更好的结果,但是使用过大的随机数初始化会减慢优化的速度。
总而言之,将权重初始化为非常大的时候其实效果并不好,下面我们试试小一点的参数值。

使用抑梯度异常初始化参数

最后,尝试 "He Initialization"它以He et al.,为名。它十分类似于 “Xavier initialization”。 Xavier initialization 使用的比例因子是 W [ l ] W^{[l]} W[l] of sqrt(1./layers_dims[l-1]) ,而He initialization 使用的是 sqrt(2./layers_dims[l-1]).)

抑梯度异常初始化参数和上面的随机初始化initialize_parameters_random(...)十分类似,唯一不同点在于上面的的np.random.randn(..,..)是用10相乘,这里的抑梯度异常初始化参数是与 2 上一层的维度 \sqrt{\frac{2}{\text{上一层的维度}}} 上一层的维度2 相乘。抑梯度异常初始化参数最好与RELU激活相配套使用。

def initialize_parameters_he(layers_dims):
    '''
    将模型参数抑梯度异常初始化
    :param layers_dim: 列表,模型的层数对应每一层节点的数
    :return:
         W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
         b1 -- bias vector of shape (layers_dims[1], 1)
         ...
         WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
         bL -- bias vector of shape (layers_dims[L], 1)
    '''
    np.random.seed(3)  # 一定要指定随机种子
    parameters = {}
    L = len(layers_dims)  # 网络层数,包含了输入层
    for l in range(1, L):  # 1 -> L-1,如果L=4,则只有W1,b1……W3,b3.
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(
            2 / layers_dims[l - 1])  # rand()只需要一层
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言
        assert (parameters['W' + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters['b' + str(l)].shape == (layers_dims[l], 1))
    return parameters

结果分析

训练模型

# 用抑梯度异常初始化来训练参数
parameters = model(train_X, train_Y, initialization="he", is_plot=True)

执行结果

0次迭代,成本值为:0.88305374634197611000次迭代,成本值为:0.6879825919728063
:
:
第13000次迭代,成本值为:0.0845705595402427414000次迭代,成本值为:0.07357895962677366

成本值下降
在这里插入图片描述
预测结果

# 预测结果
print("训练集")
predictions_train = predict(train_X, train_Y, parameters)  # 预测测试集
print("测试集")
predictions_test = predict(test_X, test_Y, parameters)  # 预测训练集

执行结果

训练集
Accuracy: 0.9933333333333333
测试集
Accuracy: 0.96

预测和决策边界

# 绘制决策边界
plt.title("Model with Zeros initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])

plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
plt.show() # 显示图像

执行结果

predictions_train = [[1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0
  0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0
  0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0
  0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0
  0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0
  1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1
  0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 0
  1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1
  1 1 1 0 0 0 0 1 1 0 1 0]]
predictions_test = [[1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1
  0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0
  1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0]]

在这里插入图片描述
抑梯度异常初始化参数的模型将蓝色和红色的点在少量的迭代中很好地分离出来

总结一下:

  1. 不同的初始化方法可能导致性能最终不同
  2. 随机初始化有助于打破对称,使得不同隐藏层的单元可以学习到不同的参数。
  3. 初始化时,初始值不宜过大。
  4. He初始化搭配ReLU激活函数常常可以得到不错的效果。

在深度学习中,如果数据集没有足够大的话,可能会导致一些过拟合的问题。过拟合导致的结果就是在训练集上有着很高的精确度,但是在遇到新的样本时,精确度下降会很严重。为了避免过拟合的问题,接下来我们要讲解的方式就是正则化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值