1. convex function
If the function is twice differentiable, and the second derivative is always greater than or equal to zero for its entire domain, then the function is convex. For example, .
2. non-convex function
A non-convex function “curves up and down” — it is neither convex nor concave. A non-convex function is wavy - has some 'valleys' (local minima) that aren't as deep as the overall deepest 'valley' (global minimum). Optimization algorithms can get stuck in the local minimum, and it can be hard to tell when this happens. For example, ,
3. concave function
A concave function is the negative of a convex function.
4. non-concave function
A non-concave function isn't a widely used term, and it's sufficient to say it's a function that isn't concave - though I've seen it used to refer to non-convex functions. I wouldn't really worry about this one.