我现在读过的文献里有两种定义。
第一种:《Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks》中提到的:

原文中提到:where #hits is the number of users whose test item appears in the recommended list。分母#users是测试集中全体用户的个数。
第二种:
H
R
=
∑
u
i
∈
Ω
t
e
∣
H
i
t
u
i
∣
∣
Ω
t
e
∣
HR = \frac{\sum_{u_i \in \Omega_{te}}|Hit_{u_i}|}{|\Omega_{te}|}
HR=∣Ωte∣∑ui∈Ωte∣Hitui∣
分子:
u
i
u_i
ui为测试集中的某一个用户,
∣
H
i
t
u
i
∣
|Hit_{u_i}|
∣Hitui∣表示向
u
i
u_i
ui推荐的物品中,属于测试集中的物品个数。
分母:
∣
Ω
t
e
∣
|\Omega_{te}|
∣Ωte∣表示测试集中所有物品的个数。
在我最近的工作中,我选择第一种作为我的指标计算。
本文探讨了两种不同的推荐系统评价指标——基于《DeepCollaborativeFiltering》的hits计数方法和HR@test用户的定义。作者在工作中选择了前者,但详细解析了两种定义的差异,以帮助读者理解在实际应用中的选择和计算方法。
2240

被折叠的 条评论
为什么被折叠?



