EM算法中三硬币模型M步的推导

观测数据 来自掷硬币B的概率为$u_j^{(i + 1)}$来自掷硬币C的概率为$1 - u_j^{(i + 1)}$则:

{\bf{Q}}({\theta ^{(i + 1)}},{\theta ^{(i)}}) = \sum\limits_{j = 1}^n {\sum\limits_z {\log } } P({y_j},z|{\theta ^{(i + 1)}})P(z|{y_j},{\theta ^{(i)}})\\ {\rm{ = }}\sum\limits_{j = 1}^n {u_j^{(i + 1)}\log \pi {p^{​{y_j}}}{​{(1 - p)}^{1 - {y_j}}} + (1 - u_j^{(i + 1)})\log (1 - \pi ){q^{​{y_j}}}{​{(1 - q)}^{1 - {y_j}}}} \\ = \sum\limits_{j = 1}^n {u_j^{(i + 1)}[\log \pi + {y_j}\log p + (1 - {y_j})\log (1 - p)] + (1 - u_j^{(i + 1)})[\log (1 - \pi ) + } {​{\rm{y}}_j}\log q + (1 - {y_j})\log (1 - q)]{\rm{ }}\]

分别对$\pi ,p,q$求偏导:

\frac{​{\partial {\bf{Q}}}}{​{\partial \pi }} = \frac{​{\sum\limits_{j = 1}^n {​{u_j}} }}{\pi } - \frac{​{\sum\limits_{j = 1}^n {1 - {u_j}} }}{​{(1 - \pi )}} = 0 \Rightarrow {\pi ^{(i + 1)}} = \frac{1}{n}\sum\limits_{j = 1}^n {u_j^{(i + 1)}}

\frac{​{\partial {\bf{Q}}}}{​{\partial \pi }} = \frac{​{\sum\limits_{j = 1}^n {​{u_j}} }}{\pi } - \frac{​{\sum\limits_{j = 1}^n {1 - {u_j}} }}{​{(1 - \pi )}} = 0 \Rightarrow {\pi ^{(i + 1)}} = \frac{1}{n}\sum\limits_{j = 1}^n {u_j^{(i + 1)}}

\frac{​{\partial {\bf{Q}}}}{​{\partial q}} = \frac{​{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)})} {y_j}}}{q} - \frac{​{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)})(1 - {y_j})} }}{​{(1 - q)}} = 0 \Rightarrow {q^{(i + 1)}} = \frac{​{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)}){y_j}} }}{​{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)})} }}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值