基于baseline、svd和stochastic gradient descent的个性化推荐系统

文章主要介绍的是koren 08年发的论文[1],  2.3部分内容(其余部分会陆续补充上来)。

koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长。考虑到写文章目地主要是已介绍总结方法为主,所以采用Movielens 数据集。

变量介绍


部分变量介绍可以参看《基于baseline和stochastic gradient descent的个性化推荐系统


文章中,将介绍两种方法实现的简易个性化推荐系统,用RMSE评价标准,对比这两个方法的实验结果。

(1) svd + stochstic gradient descent 方法来实现系统。

(2) baseline + svd + stochastic gradient descent 方法来实现系统。

注:



方法1: svd + stochastic gradient descent

svd:  


cost  function:


梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)


方法1,具体代码实现

[python]  view plain copy print ?
  1. ''''' 
  2. Created on Dec 13, 2012 
  3.  
  4. @Author: Dennis Wu 
  5. @E-mail: hansel.zh@gmail.com 
  6. @Homepage: http://blog.csdn.net/wuzh670 
  7.  
  8. Data set download from : http://www.grouplens.org/system/files/ml-100k.zip 
  9. '''  
  10.   
  11. from operator import itemgetter, attrgetter  
  12. from math import sqrt  
  13. import random  
  14.   
  15. def load_data():  
  16.       
  17.     train = {}  
  18.     test = {}  
  19.     filename_train = 'data/ua.base'  
  20.     filename_test = 'data/ua.test'  
  21.       
  22.     for line in open(filename_train):  
  23.         (userId, itemId, rating, timestamp) = line.strip().split('\t')  
  24.         train.setdefault(userId,{})  
  25.         train[userId][itemId] = float(rating)  
  26.     
  27.     for line in open(filename_test):  
  28.         (userId, itemId, rating, timestamp) = line.strip().split('\t')  
  29.         test.setdefault(userId,{})  
  30.         test[userId][itemId] = float(rating)  
  31.           
  32.     return train, test  
  33.   
  34. def calMean(train):  
  35.     stat = 0  
  36.     num = 0  
  37.     for u in train.keys():  
  38.         for i in train[u].keys():  
  39.             stat += train[u][i]  
  40.             num += 1  
  41.     mean = stat*1.0/num  
  42.     return mean  
  43.   
  44. def initialFeature(feature, userNum, movieNum):  
  45.   
  46.     random.seed(0)  
  47.     user_feature = {}  
  48.     item_feature = {}  
  49.     i = 1  
  50.     while i < (userNum+1):  
  51.         si = str(i)  
  52.         user_feature.setdefault(si,{})  
  53.         j = 1  
  54.         while j < (feature+1):  
  55.             sj = str(j)  
  56.             user_feature[si].setdefault(sj,random.uniform(0,1))  
  57.             j += 1  
  58.         i += 1  
  59.       
  60.     i = 1  
  61.     while i < (movieNum+1):  
  62.         si = str(i)  
  63.         item_feature.setdefault(si,{})  
  64.         j = 1  
  65.         while j < (feature+1):  
  66.             sj = str(j)  
  67.             item_feature[si].setdefault(sj,random.uniform(0,1))  
  68.             j += 1  
  69.         i += 1  
  70.     return user_feature, item_feature  
  71.   
  72. def svd(train, test, userNum, movieNum, feature, user_feature, item_feature):  
  73.   
  74.     gama = 0.02  
  75.     lamda = 0.3  
  76.     slowRate = 0.99  
  77.     step = 0  
  78.     preRmse = 1000000000.0  
  79.     nowRmse = 0.0  
  80.       
  81.     while step < 100:  
  82.         rmse = 0.0  
  83.         n = 0  
  84.         for u in train.keys():  
  85.             for i in train[u].keys():  
  86.                 pui = 0  
  87.                 k = 1  
  88.                 while k < (feature+1):  
  89.                     sk = str(k)  
  90.                     pui += user_feature[u][sk] * item_feature[i][sk]  
  91.                     k += 1  
  92.                 eui = train[u][i] - pui  
  93.                 rmse += pow(eui,2)  
  94.                 n += 1  
  95.                 k = 1  
  96.                 while k < (feature+1):  
  97.                     sk = str(k)  
  98.                     user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk])  
  99.                     item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda**item_feature[i][sk])  
  100.                     k += 1  
  101.               
  102.         nowRmse = sqrt(rmse*1.0/n)  
  103.         print 'step: %d      Rmse: %s' % ((step+1), nowRmse)  
  104.         if (nowRmse < preRmse):  
  105.             preRmse = nowRmse  
  106.               
  107.         gama *= slowRate  
  108.         step += 1  
  109.           
  110.     return user_feature, item_feature  
  111.   
  112. def calRmse(test, user_feature, item_feature, feature):  
  113.       
  114.     rmse = 0.0  
  115.     n = 0  
  116.     for u in test.keys():  
  117.         for i in test[u].keys():  
  118.             pui = 0  
  119.             k = 1  
  120.             while k < (feature+1):  
  121.                 sk = str(k)  
  122.                 pui += user_feature[u][sk] * item_feature[i][sk]  
  123.                 k += 1  
  124.             eui = pui - test[u][i]  
  125.             rmse += pow(eui,2)  
  126.             n += 1  
  127.     rmse = sqrt(rmse*1.0 / n)  
  128.     return rmse;  
  129.      
  130. if __name__ == "__main__":  
  131.   
  132.     # load data  
  133.     train, test = load_data()  
  134.     print 'load data success'  
  135.   
  136.     # initial user and item feature, respectly  
  137.     user_feature, item_feature = initialFeature(1009431682)  
  138.     print 'initial user and item feature, respectly success'  
  139.       
  140.     # baseline + svd + stochastic gradient descent  
  141.     user_feature, item_feature = svd(train, test, 9431682100, user_feature, item_feature)  
  142.     print 'svd + stochastic gradient descent success'  
  143.       
  144.     # compute the rmse of test set  
  145.     print 'the Rmse of test test is: %s' % calRmse(test, user_feature, item_feature, 100)  
  146.       
  147.       



方法2:baseline + svd + stochastic gradient descent 

baseline + svd:


object function:


梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)


方法2: 具体代码实现

[python]  view plain copy print ?
  1. ''''' 
  2. Created on Dec 13, 2012 
  3.  
  4. @Author: Dennis Wu 
  5. @E-mail: hansel.zh@gmail.com 
  6. @Homepage: http://blog.csdn.net/wuzh670 
  7.  
  8. Data set download from : http://www.grouplens.org/system/files/ml-100k.zip 
  9. '''  
  10.   
  11. from operator import itemgetter, attrgetter  
  12. from math import sqrt  
  13. import random  
  14.   
  15. def load_data():  
  16.       
  17.     train = {}  
  18.     test = {}  
  19.     filename_train = 'data/ua.base'  
  20.     filename_test = 'data/ua.test'  
  21.       
  22.     for line in open(filename_train):  
  23.         (userId, itemId, rating, timestamp) = line.strip().split('\t')  
  24.         train.setdefault(userId,{})  
  25.         train[userId][itemId] = float(rating)  
  26.     
  27.     for line in open(filename_test):  
  28.         (userId, itemId, rating, timestamp) = line.strip().split('\t')  
  29.         test.setdefault(userId,{})  
  30.         test[userId][itemId] = float(rating)  
  31.           
  32.     return train, test  
  33.   
  34. def calMean(train):  
  35.     stat = 0  
  36.     num = 0  
  37.     for u in train.keys():  
  38.         for i in train[u].keys():  
  39.             stat += train[u][i]  
  40.             num += 1  
  41.     mean = stat*1.0/num  
  42.     return mean  
  43.   
  44. def initialBias(train, userNum, movieNum, mean):  
  45.   
  46.     bu = {}  
  47.     bi = {}  
  48.     biNum = {}  
  49.     buNum = {}  
  50.       
  51.     u = 1  
  52.     while u < (userNum+1):  
  53.         su = str(u)  
  54.         for i in train[su].keys():  
  55.             bi.setdefault(i,0)  
  56.             biNum.setdefault(i,0)  
  57.             bi[i] += (train[su][i] - mean)  
  58.             biNum[i] += 1  
  59.         u += 1  
  60.           
  61.     i = 1  
  62.     while i < (movieNum+1):  
  63.         si = str(i)  
  64.         biNum.setdefault(si,0)  
  65.         if biNum[si] >= 1:  
  66.             bi[si] = bi[si]*1.0/(biNum[si]+25)  
  67.         else:  
  68.             bi[si] = 0.0  
  69.         i += 1  
  70.   
  71.     u = 1  
  72.     while u < (userNum+1):  
  73.         su = str(u)  
  74.         for i in train[su].keys():  
  75.             bu.setdefault(su,0)  
  76.             buNum.setdefault(su,0)  
  77.             bu[su] += (train[su][i] - mean - bi[i])  
  78.             buNum[su] += 1  
  79.         u += 1  
  80.           
  81.     u = 1  
  82.     while u < (userNum+1):  
  83.         su = str(u)  
  84.         buNum.setdefault(su,0)  
  85.         if buNum[su] >= 1:  
  86.             bu[su] = bu[su]*1.0/(buNum[su]+10)  
  87.         else:  
  88.             bu[su] = 0.0  
  89.         u += 1  
  90.   
  91.     return bu,bi  
  92.   
  93. def initialFeature(feature, userNum, movieNum):  
  94.   
  95.     random.seed(0)  
  96.     user_feature = {}  
  97.     item_feature = {}  
  98.     i = 1  
  99.     while i < (userNum+1):  
  100.         si = str(i)  
  101.         user_feature.setdefault(si,{})  
  102.         j = 1  
  103.         while j < (feature+1):  
  104.             sj = str(j)  
  105.             user_feature[si].setdefault(sj,random.uniform(0,1))  
  106.             j += 1  
  107.         i += 1  
  108.       
  109.     i = 1  
  110.     while i < (movieNum+1):  
  111.         si = str(i)  
  112.         item_feature.setdefault(si,{})  
  113.         j = 1  
  114.         while j < (feature+1):  
  115.             sj = str(j)  
  116.             item_feature[si].setdefault(sj,random.uniform(0,1))  
  117.             j += 1  
  118.         i += 1  
  119.     return user_feature, item_feature  
  120.   
  121. def svd(train, test, mean, userNum, movieNum, feature, user_feature, item_feature, bu, bi):  
  122.   
  123.     gama = 0.02  
  124.     lamda = 0.3  
  125.     slowRate = 0.99  
  126.     step = 0  
  127.     preRmse = 1000000000.0  
  128.     nowRmse = 0.0  
  129.       
  130.     while step < 100:  
  131.         rmse = 0.0  
  132.         n = 0  
  133.         for u in train.keys():  
  134.             for i in train[u].keys():  
  135.                 pui = 1.0 * (mean + bu[u] + bi[i])  
  136.                 k = 1  
  137.                 while k < (feature+1):  
  138.                     sk = str(k)  
  139.                     pui += user_feature[u][sk] * item_feature[i][sk]  
  140.                     k += 1  
  141.                 eui = train[u][i] - pui  
  142.                 rmse += pow(eui,2)  
  143.                 n += 1  
  144.                 bu[u] += gama * (eui - lamda * bu[u])  
  145.                 bi[i] += gama * (eui - lamda * bi[i])  
  146.                 k = 1  
  147.                 while k < (feature+1):  
  148.                     sk = str(k)  
  149.                     user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk])  
  150.                     item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda*item_feature[i][sk])  
  151.                     k += 1  
  152.               
  153.         nowRmse = sqrt(rmse*1.0/n)  
  154.         print 'step: %d      Rmse: %s' % ((step+1), nowRmse)  
  155.         if (nowRmse < preRmse):  
  156.             preRmse = nowRmse  
  157.               
  158.         gama *= slowRate  
  159.         step += 1  
  160.     return user_feature, item_feature, bu, bi  
  161.   
  162. def calRmse(test, bu, bi, user_feature, item_feature, mean, feature):  
  163.       
  164.     rmse = 0.0  
  165.     n = 0  
  166.     for u in test.keys():  
  167.         for i in test[u].keys():  
  168.             pui = 1.0 * (mean + bu[u] + bi[i])  
  169.             k = 1  
  170.             while k < (feature+1):  
  171.                 sk = str(k)  
  172.                 pui += user_feature[u][sk] * item_feature[i][sk]  
  173.                 k += 1  
  174.             eui = pui - test[u][i]  
  175.             rmse += pow(eui,2)  
  176.             n += 1  
  177.     rmse = sqrt(rmse*1.0 / n)  
  178.     return rmse;  
  179.      
  180. if __name__ == "__main__":  
  181.   
  182.     # load data  
  183.     train, test = load_data()  
  184.     print 'load data success'  
  185.       
  186.     # Calculate overall mean rating  
  187.     mean = calMean(train)  
  188.     print 'Calculate overall mean rating success'  
  189.   
  190.     # initial user and item Bias, respectly  
  191.     bu, bi = initialBias(train, 9431682, mean)  
  192.     print 'initial user and item Bias, respectly success'  
  193.   
  194.     # initial user and item feature, respectly  
  195.     user_feature, item_feature = initialFeature(1009431682)  
  196.     print 'initial user and item feature, respectly success'  
  197.       
  198.     # baseline + svd + stochastic gradient descent  
  199.     user_feature, item_feature, bu, bi = svd(train, test, mean, 9431682100, user_feature, item_feature, bu, bi)  
  200.     print 'baseline + svd + stochastic gradient descent success'  
  201.       
  202.     # compute the rmse of test set  
  203.     print 'the Rmse of test test is: %s' % calRmse(test, bu, bi, user_feature, item_feature, mean, 100)  
  204.       
  205.       

实验参数设置:

   

(gama = 0.02  lamda =0.3)

   feature = 100 maxstep = 100 slowRate = 0.99(随着迭代次数增加,梯度下降幅度越来越小) 


方法1结果:Rmse of test set : 1.00422938926

方法2结果:Rmse of test set : 0.963661477881







REFERENCES

1.Y. Koren. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model. Proc. 14th ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining  (KDD08), pp. 426434, 2008.

2. Y.Koren.  The BellKor Solution to the Netflix Grand Prize  2009


转载请注明:转自 zh's note    http://blog.csdn.net/wuzh670/

知识图谱推荐系统baseline代码是指在搭建推荐系统时的初始代码框架。该框架用于构建基础的推荐模型,包括数据预处理、特征工程、模型训练和推荐结果生成等步骤。 在数据预处理阶段,可以使用代码将原始数据清洗、转换成模型可用的格式,并进行数据分割和样本筛选等操作。例如,可以使用Python的pandas库进行数据读取、清洗和转换操作。 特征工程是提取用户和物品的特征,用于训练推荐模型。在该阶段,可以使用代码提取用户的基本信息、历史行为数据,以及物品的属性信息等特征。可以使用Python的特征提取库,如scikit-learn,进行特征提取和转换操作。 模型训练是使用机器学习算法构建推荐模型的过程。在该阶段,可以使用代码选择适当的机器学习算法,并进行模型训练和参数调优。例如,可以使用Python的机器学习库,如scikit-learn或PyTorch,进行模型的训练和优化。 推荐结果生成是根据训练好的模型,为用户生成个性化的推荐结果。该阶段使用训练好的模型对新用户和物品进行打分,然后按照一定的规则,生成推荐列表。例如,可以使用代码计算用户和物品之间的相似度,并根据相似度进行推荐。 综上所述,知识图谱推荐系统baseline代码是一套基础的推荐系统框架,包括数据预处理、特征工程、模型训练和推荐结果生成等步骤。通过这套代码,可以快速搭建一个基本的知识图谱推荐系统,并在此基础上进行进一步的优化和改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值