基于CNN的多智能体人群模拟替代方法
在多智能体人群模拟领域,计算时间会随着智能体数量的增加而显著增长,这成为了一个亟待解决的关键问题。本文提出了一种使用卷积神经网络(CNNs)的方法,旨在从每个智能体的条件和人群的初始排列来估计模拟结果,以实现快速获取模拟结果的目标。
1. 相关背景
在许多领域,如交通流量计算、人类行为模拟等,多智能体模拟都有广泛应用。在多智能体人群模拟中,传统方法采用自下而上的方式,基于智能体之间的交互来计算人群流动,但这种方法的计算时间会随着智能体数量的增加而增加,导致难以快速获得模拟结果。
而深度神经网络(DNNs)在一些模拟领域已经展现出了加速模拟的潜力。例如,在流体动力学模拟中,有方法用CNNs替代纳维 - 斯托克斯方程的部分计算过程;在分子动力学模拟中,也有使用DNNs从短期模拟结果估计长期模拟结果的方法。此外,CNNs在图像领域取得了巨大进展,并且逐渐应用到自然语言处理、声学信号处理和游戏AI等其他领域。在人群模拟方面,已有研究通过CNNs提取当前人群的空间特征,准确预测未来人群流动,这是因为人群的初始排列对未来人群流动有显著影响。
2. 问题设定
在多智能体人群模拟的一般设定中,人群的场景(如路线、速度等)和人群在不同时间戳的坐标是关键输入。给定人群场景和初始坐标,模拟器会计算人群在后续时间的坐标,并输出目标值。
3. 提出的方法
提出的方法主要包括两个步骤:
- 转换为三维张量(3d - tensor) :将人群场景和初始坐标转换为适合CNNs的3d - tensor。具体操作是,先为每个条件和每个值创建二维