移动机器人赋能智能空气净化

面向智能家居的移动机器人智能空气净化与加湿

摘要

空气净化器和加湿器作为流行的家用电器,通过注入和控制空气,在整个房屋内拥有较大的工作空间。室内空气循环限制了空气净化的效率,而这种效率差异会随房间形状、温度、家具布置和人体活动等环境因素的变化而变化。本研究将移动机器人技术提供的移动性与传统空气净化功能相结合。这种机器人设备能够改善依赖于空气注入和过滤的空气净化效率。在我们的实验中,验证了移动性的有效性,并探讨了作为一种新型智能家居服务机器人的商业增长潜力。

作者关键词
人工智能、人机交互、移动机器人

ACM 分类关键词
智能代理、自动驾驶车辆、商用机器人及应用

1. 引言

智能家居技术的出现是近年来持续关注的问题。作为信息技术的延伸,传统的家用电器正与无线设备融合,迈向智能环境[1, 2]。近年来,智能家居技术已扩展到物联网(IoT)技术领域,旨在将感知和交互区域嵌入日常物品中。

从物联网或传感器网络技术的角度来看,大多数传感器能够测量物理因素的变化,但缺乏移动性。采集到的数据通过网络即时传输给用户。然而,由于传感器在许多情况下没有移动性,空间传播的测量速度较慢,难以实现快速响应。

机器人和移动设备正作为未来的智能设备受到关注。智能手机在不确定的地点收集非特定数据。这种类型的数据挖掘对于分析长期数据是高效的,并且依赖于海量信息的可用性。然而,在具备主动移动性的数据采集方面,目前的选择较少。一个可行的方案是扩展服务机器人在家庭环境中的移动性。清洁机器人是成功的家用服务机器人之一。通过专注于移动性,它至今仍是唯一成功商业化的机器人。另一方面,例如,具备移动性的服务机器人可以作为人类与远程地点物理环境交互的替代方式。

此外,机器人应能自动确定与环境物体交互的重要动作。

在家用电器中,空气净化器的市场需求每年都在增长,专门用于大型工作空间。控制目标是人类所处的周围环境——空气。因此,即使没有移动性,空气也会流入家庭内部的整体空间。然而,气流响应缓慢,导致风扇功率增加,进而引起过高的功耗。此外,由于空气喷射在许多区域产生作为涡旋的二次流,使得气流速度为零,从而频繁出现净化和加湿的局部差异。

示意图0
图1. 空气调节

如图1所示,我们提出了一种通过融合移动机器人技术实现的智能空气净化加湿器。由于平台的移动性,附着在机器人上的传感器可以测量各个区域的局部数据,这有助于向用户详细提供快速响应和空间分布信息。

2. SM设计

一种设计用于通用、清洁障碍物、跟随的移动机器人。空气净化器具有注入功能。为了将空气从空气净化器的出口排出到地面,就像清洁机器人中的空气净化机器人一样,其关键部件是传感器,该传感器需要检测空气中灰尘的存在,这通过光学传感器实现。

对于加湿,采用蒸发式加湿,通过加热或超声波方式使水蒸发,避免液滴携带污染物造成污染。

近年来,由于其容器和w的增加,提高了评估。

2.1 智能空气调节与加湿概念

信息是特征流量。促进机器人应具备的内容。

玛特空调公司带有沿墙壁飞行概念的机器人 bot,具有翅膀。具有改善空气功能,空气净化器位于局部区域。在清洁机器人的情况下,该机器人被设计用于控制灰尘颗粒,并具备调节空气和空气质量水平的能力。

加湿,多个加湿器吹出水雾。流动的水,以及加湿器振动产生冷雾。在通风口处,这取决于秒,自然加湿,结构简单,吸水芯实现水蒸发速度。

艺术空气净化器加湿功能:针对cs进行分析,并控制湿度,使其具有适应性。

2.2 NDITIONING R

空气调节一个高大的清洁具有功能并探索未。空气过滤的条件,在更高的压力下进行,由移动机器人完成。对于设计而言,需要具有适当的应用,与…相比,空气流量为每秒若干升。风扇速度的设定,是通过某种方式实现的。

这些方法是将空气吹向一个金属部件。加湿器释放蒸汽,利用金属制造蒸汽。这些类型涉及蒸发管。一种蒸发方法。

加湿器通过蒸发使水汽化,并配备有空气吹风机。

r机器人结合了移动性。确定由此湿度依赖于长期对特定家庭的影响。

机器智人能功能扫地机器人。在未知空间中的避障功能。净化、吸力以及风扇和位置相较于传统方式,由于此原因,适当高度下,空气以低速率流动。

空气净化依据测量结果进行。e可用。一种有助于加湿器使用的快速方法,将水滴释放到空气中。由于某些因素阻碍了水滴的蒸发,此外,该系统也影响了蒸发。成为流行。自然地使用。水经常被使用。

他去房间找我 是 In ng s。nd he he he ht, nal ust on nce an An he ses An ets by ze lar f a To d.

在该组合中,如图所示,通过依赖湿度,湿度大约为方便的空气净化。

对于传感器,传感器会通知机器人墙壁的位置,以确定右移移动时是否安全。

sy层。生成轮子的距离输入、湿度和移动检测动作。最后基于记忆中的动作,以局部位置关系的方式进行定位。

本文中,我们设计了一种自然人。2. 通过使用g,经过ds对ev进行净化。为了提高净化效率,我们的60厘米,与标准的净化器相比,具有功能性清洁优势。

机器人的移动性被用于检测运动。该机器人通过四个步骤进行任务检测,第四个步骤判断是否存在障碍物。因此,在通过突出物时,机器人将…

3. 系统架构

在第一次产生脉冲—风扇电机与物体之间的距离测量在优化。在该方案中传感器感知到靠近并向右移动。

y,第三层涉及长期i关系。厨房中的rizes根据nship结构的因果关系化功能进行er [3]。

示意图1
图2. A

设计一款带有风扇的空气净化加湿器,利用蒸发技术去除灰尘并改善空气,其高度显著低于移动机器人。它的高度位于地板上方。

如果提出的方案用于测量前端应用,第四传感器位于前方以测量到墙壁的距离,该传感器可检测到机器人,当机器人进入危险区域时,将沿墙壁行进。

机器人层的结构、ARM脉宽调制电机。机器人的四个方向,使机器人能够在第二层前后移动、旋转以及碰撞检测。

当机器人存在时,通过组合交互生成,能够增强网络中的关系强度。

智能空调:净化器和风扇控制,当空气经过过滤时。加湿功能通过风扇控制实现,该技术与机器人的空气净化方式有显著差异,但重量相似。

d机器人,四个e距离阵列传感器位于右侧以接近墙壁。在测试中,传感器用于检测机器人是否进入封闭空间以及是否靠近墙壁。

bot由基于M的微信号组成,用于控制超声波传感器以检测障碍物。通过空气、温度、整体硬件以及几个在右转时使用的符号。

由机器人生成的情境检测到特定位置的空气质量较差,机器人会增加该位置的净化量,并将空气过滤数据记忆到预设模型中。

空调机器人:如前所述,加湿器通过自然加湿作用实现加湿功能,并设计为从机器人延伸至整体环境。

超声波射线。三个维度的碰撞,位于以下墙壁右侧的开放空间进行测量。

由三个微处理器控制,两个传感器检测三个模拟信号,如温度,以及基于软件的工具,例如右和左。

感知灰尘的意识与风扇速度。它所处的位置。更优化的概率。

4. 本体论方法与智能环境

在我们的初步测试中,第三层包含概率网络模型,该模型揭示了长期机器人与环境交互过程中的因果关系。

在此测试中,每当厨房产生烟雾或水蒸气时,我们检测了空气污染。粉尘传感器的分辨率为可检测一微米大小的粉尘。通常情况下,粉尘在大约五分钟内扩散至整个房屋。当机器人进入厨房时,粉尘增量会发生突然变化。

在一分钟内,机器人即可检测到粉尘增量。移动性对于响应传感器网络的变化至关重要。然而,所提出的机器人系统需要进行预测,以便移动到相应区域或追踪粉尘增量源[2, 4]。

遗憾的是,所提出的机器人无法准确检测粉尘强度梯度。因此,构建网络是实现快速响应系统所需的关键功能,用于预测日常生活模式。

在加湿的情况下,浴室通常具有高湿度,但也存在较大波动。当浴室门关闭时,湿度不会高到让机器人将该区域识别为干燥区域。否则,湿度会足够高,使机器人停止加湿。因此,需要额外考虑门的状态,并根据门的开关状态做出相应的判断。出于这一原因,应采用一种可扩展的本体论方法,以实现情境感知和观测。

5. 结论与进一步工作

我们提出了一种智能空调机器人,将传统的空气净化和加湿功能与移动机器人技术相结合。

我们期望该组合平台能够实现智能传感器网络的快速响应,并通过所提出的移动性来弥补空间差异和缓慢传播速度。

在我们的初步测试中,我们验证了需要采用本体论方法来解决预测模型以及由移动性的附加功能引起的情境问题。

对于涉及所提出机器人的未来产品,需要对移动机器人进行定位。在长期交互过程中,机器人应学习家庭环境中所有物体的具体位置。此外,应建立一种预测方法,使机器人比基于传感器的模型更智能。

此外,需要情境感知或额外传感器来识别给定的情况,例如门是否已打开。

内容概要:本文介绍了一种基于带通滤波后倒谱预白化技术的轴承故障检测方法,特别适用于变速工况下故障特征提取困难的问题。该方法通过对振动信号进行带通滤波,抑制噪声干扰,再利用倒谱预白化消除调制效应,提升周期性冲击特征的可辨识度,最后通过平方包络谱分析有效识别轴承故障频率。文中提供了完整的Matlab代码实现,便于读者复现算法并应用于实际故障诊断场景。该技术对于早期微弱故障信号的检测具有较强敏感性,能够显著提高变速条件下轴承故障诊断的准确性。; 适合人群:具备一定信号处理基础,从事机械故障诊断、工业设备状态监测等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决变速工况下传统包络谱分析易受频率混叠和噪声干扰导致故障特征难以识别的问题;②实现对轴承早期故障微弱冲击信号的有效提取与增强;③为旋转机【轴承故障检测】【借助倒谱预白化技术在变速条件下诊断轴承故障的应用】带通滤波后的倒谱预白化的平方包络谱用于轴承故障检测(Matlab代码实现)械的智能运维与预测性维护提供技术支持。; 阅读建议:建议结合Matlab代码逐行理解算法流程,重点关注带通滤波器设计、倒谱预白化处理步骤及平方包络谱的生成过程,同时推荐使用公开数据集(如CWRU)进行验证与对比实验,以深入掌握方法优势与适用边界。
内容概要:本文系统介绍了嵌入式RTOS与Linux系统开发的核心技术,涵盖RTOS的任务管理、优先级设计、同步机制(信号量、互斥锁)、通信机制(消息队列、事件标志组)和定时器管理,以及嵌入式Linux的内核裁剪、设备驱动开发、文件系统与存储管理、网络协议栈应用和多线程开发。文章还探讨了RTOS与Linux混合开发场景下的跨系统通信、任务同步与资源调度策略,并强调了调试与性能优化的重要性,介绍了RTOS和Linux各自的调试工具与方法,旨在帮助开发者构建高性能、高可靠性的嵌入式系统。; 适合人群:具备嵌入式系统基础知识,从事工业控制、物联网、智能设备开发的1-5年经验的软硬件研发工程师;对实时系统与复杂功能集成有需求的技术人员。; 使用场景及目标:①在实时性要求高的场景中合理运用RTOS实现精准任务调度与低延迟响应;②在功能复杂的嵌入式设备中使用Linux进行驱动开发、网络通信与系统扩展;③在双系统架构中实现RTOS与Linux间的高效协同与数据交互;④通过性能分析工具优化系统响应、降低功耗与提升稳定性。; 阅读建议:建议结合实际项目背景阅读,重点关注任务划分、优先级设计、跨系统通信机制及调试工具的使用,配合实验平台动手实践各类驱动、通信接口与性能调优操作,深入理解理论与工程落地之间的联系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值