神经网络
文章平均质量分 55
redboom
这个作者很懒,什么都没留下…
展开
-
Rosenblatt感知机-神经网络与机器学习笔记1
一、Rosenblatt感知机小结感知机模型 输入向量:x(n)=[+1,x1(n),x2(n),...,xm(n)]Tx(n)=[+1,x_1(n),x_2(n),...,x_m(n)]^T 权重向量:w(n)=[b,w1(n),w2(n),...wm(n)]Tw(n)=[b,w_1(n),w2(n),...w_m(n)]^T 当输入向量线性可分时,我们需要寻找到一个合适的w,正确地分开原创 2017-03-29 21:07:58 · 350 阅读 · 0 评论 -
正则化最小二乘法——神经网络与机器学习笔记2
参考Andrew Ng 公开课的推导一些公式trA=∑ni=1AiitrA=\sum_{i=1}^nA_{ii} trAB=trBAtrAB=trBA trABC=trCBA=trBCAtrABC=trCBA=trBCA trA=trATtrA=trA^T if a∈Ra\in R, tra=atra=a ∇AtrAB=BT\nabla_AtrAB=B^T ∇AtrABATC=CAB+C原创 2017-03-29 21:08:20 · 640 阅读 · 0 评论 -
自回归模型的LMS学习曲线-神经网络与机器学习笔记3
对于自回归模型x(n)=ax(n−1)+ϵ(n)x(n)=ax(n-1)+\epsilon(n) a=0.99a=0.99, σ2ϵ=0.02\sigma_\epsilon^2=0.02,σ2x=0.995\sigma_x^2=0.995 利用这个模型参数一组标准数据,然后使用LMS方法求解这个模型中的参数a 为了得到LMS学习曲线,我们将求解过程重复100次,并且每次产生不同的标准数据用于求原创 2017-03-29 21:08:58 · 1377 阅读 · 0 评论