strassen方法求任意行列数的矩阵乘法

根据之前的文章strassen方法求矩阵乘法,我们只需要在使用strassen方法前对矩阵进行处理,对任意行列数的矩阵mxn,在最后一行或最后一列后面添加0,使行数和列数补齐为2的幂。
修改之前的代码如下:

void MatrixMultipy(int* a, int arow, int acol, int* b, int brow, int bcol, int* c)
{
    int aM = 1;
    while (aM < arow)
    {
        aM *= 2;
    }
    int aN = 1;
    while (aN < acol)
    {
        aN *= 2;
    }
    DATATYPE* aa = new DATATYPE[aM*aN];
    memset(aa, 0, sizeof(DATATYPE)*aM*aN);
    SubMat A(aa, aM, aN);
    for (int i = 0; i < arow; i++)
    {
        for (int j = 0; j < acol; j++)
        {
                A.SetData(i, j, a[i*acol+j]);
        }
    }

    int bM = 1;
    while (bM < brow)
    {
        bM *= 2;
    }
    int bN = 1;
    while (bN < bcol)
    {
        bN *= 2;
    }
    DATATYPE* bb = new DATATYPE[bM*bN];
    memset(bb, 0, sizeof(DATATYPE)*bM*bN);
    SubMat B(bb, bM, bN);
    for (int i = 0; i < brow; i++)
    {
        for (int j = 0; j < bcol; j++)
        {
            B.SetData(i, j, b[i*bcol + j]);
        }
    }
    DATATYPE* cc = new DATATYPE[aM*bN];
    memset(cc, 0, sizeof(DATATYPE)*aM*bN);
    SubMat C(cc, aM, bN);
    MatrixMultiplyAB(A,B,C);
    for (int i = 0; i < arow; i++)
    {
        for (int j = 0; j < bcol; j++)
        {
            c[i*bcol + j] = C.GetData(i, j);
        }
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Strassen方法是一种高效的矩阵乘法算法,它可以将两个矩阵的乘法运算复杂度从O(n^3)降低到O(n^log2(7)),其中n是矩阵的大小。 Strassen方法的基本思想是将两个矩阵分成四个子矩阵,然后通过一些学运算来计算出它们的乘积。具体来说,假设我们要计算两个n×n的矩阵A和B的乘积C,我们可以将它们分成四个n/2×n/2的子矩阵: A = [A11 A12] B = [B11 B12] [A21 A22] [B21 B22] 其中A11、A12、A21、A22和B11、B12、B21、B22分别是n/2×n/2的矩阵。然后,我们可以通过以下公式来计算C: C = [C11 C12] C11 = M1 + M4 - M5 + M7 [C21 C22] C12 = M3 + M5 C21 = M2 + M4 C22 = M1 - M2 + M3 + M6 其中M1到M7是通过以下公式计算得到的: M1 = (A11 + A22) × (B11 + B22) M2 = (A21 + A22) × B11 M3 = A11 × (B12 - B22) M4 = A22 × (B21 - B11) M5 = (A11 + A12) × B22 M6 = (A21 - A11) × (B11 + B12) M7 = (A12 - A22) × (B21 + B22) 通过这种方法,我们可以将矩阵乘法的时间复杂度从O(n^3)降低到O(n^log2(7)),从而大大提高了计算效率。 ### 回答2: 矩阵乘法是计算机科学领域中常见的基本运算之一,能够被广泛应用于许多不同的领域,如据分析、机器学习、图像处理等。然而,当矩阵较为大时,标准的矩阵乘法算法计算量较大,时间复杂度为O(n³),耗费的时间和空间资源较多。因此,在实际运用中,使用高效的矩阵乘法算法能够显著提高算法性能。Strassen算法就是一种可以极大提高矩阵乘法算法效率的算法。 Strassen算法基于分治思想,通过将原始矩阵分割成多个较小的矩阵,并运用递归思想进计算,从而实现高效的矩阵乘法运算。这种算法的核心思想在于将两个矩阵分别划分为4个部分,然后对这些部分计算七个中间矩阵,即P1、P2、P3、P4、P5、P6和P7,从而组合得到目标矩阵。这些中间矩阵的计算过程中,大部分的计算是可以重复利用的,因此Strassen算法的计算量比标准的矩阵乘法算法少。 实现Strassen算法通常需要考虑一些实际问题,比如如何处理矩阵元素个不是2的幂的情况、如何处理矩阵行列不等的情况以及如何减少递归层等。在实际应用中,Strassen算法常常与其他技术一同使用,例如阶段性跑阈值以及缓存块的使用,以进一步提高算法性能。 总之,Strassen算法是一种运用递归思想实现高效矩阵乘法的算法,适用于大规模矩阵的计算。在实践中,可以通过结合缓存块和阶段性递归等技术,进一步提高算法效率。 ### 回答3: Strassen方法是一种快速的矩阵乘法算法,它的时间复杂度为O(n^log2(7)),比标准的矩阵乘法算法的时间复杂度O(n^3)更加高效。使用Strassen方法实现矩阵乘法需要如下步骤: 1. 划分矩阵:将两个要相乘的矩阵A和B分别划分成四个相等大小的子矩阵。假设A和B是n×n矩阵,则有如下划分: ① A11、A12、A21、A22 ② B11、B12、B21、B22 2. 计算七个子矩阵的乘积:使用以下式子计算七个子矩阵的乘积: ① P1 = A11×(B12-B22) ② P2 = (A11+A12)×B22 ③ P3 = (A21+A22)×B11 ④ P4 = A22×(B21-B11) ⑤ P5 = (A11+A22)×(B11+B22) ⑥ P6 = (A12-A22)×(B21+B22) ⑦ P7 = (A11-A21)×(B11+B12) 3. 结合七个子矩阵:使用以下式子结合七个子矩阵得出最终结果矩阵C: C11 = P5+P4-P2+P6 C12 = P1+P2 C21 = P3+P4 C22 = P5+P1-P3-P7 最后得到的C矩阵即为矩阵A和B的乘积。需要注意的是,如果矩阵A和B的大小不是2的幂次方,则需要通过填充0来使它们的大小变为2的幂次方。此外,Strassen方法适用于矩阵的大小较大时才能体现出其快速计算的优势,当矩阵的大小较小时反而会比标准的矩阵乘法算法的时间复杂度更高。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值