1、Hadoop是什么?
- Hadoop是一个有Apache基金会所开发的分布式系统基础架构
- Hadoop主要解决两个问题:海量数据的存储和海量数据的分析计算问题
- 广义上来说,Hadoop通常是指一个更广泛的概念-Hadoop生态圈
2、Hadoop发展历史
- Hadoop的创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优化升级,查询引擎和索引搜索
- 2001年年底,Lucene成为Apache基金会的一个子项目
- 对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢
- 学习和模范Google解决这些问题的方法:微型版Nutch
- Google是Hadoop的思想之源(Google在大数据方面的三篇论文:GFS-> HDFS,Map-Reduce–>MR,BigTable–>HBase)
- 2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年的业余时间实现了DFS和MapReduce机制,是Nutch性能飙升
- 2005年Hadoop作为Lucene的子项目Nutch的一部分正式引入Apache基金会
- 2006年3月份,Map-Reduce和Nutch Distributed File System(NDFS)分别被纳入到Hadoop项目中,Hadoop就此正式诞生了,标志着大数据时代的来临
- Hadoop名字来源于Doug Cutting儿子的玩具大象
3、 Hadoop三大发行版本
-
Apache,Cloudera,Hortonworks
-
Apache版本是最原始(最基础)的版本,对于入门学习最好,2006
-
Cloudera内部集成了很多大数据框架,对应产品CDH,2008
-
Hortonworks文档较好,对应产品HDP,2011
-
Horonworks现在已经被Cloudera公司收购(2018),推出新的品牌CDP
-
Hadoop的优势
- 高可靠性:Hadoop底层维护多个数据副本,所以及时Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失
- 高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点,可以动态增加服务器
- 高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度
- 高容错性:能够自动将失败的任务重新分配
4、Hadoop的组成
- Hadoop 1.x的组成:
- Hadoop 2.x 组成
- Hadoop 3.x在组成上和2.x没有什么区别
5、HDFS 架构概述:
- Hadoop Distributed File System,简称HDFS,是一个分布式文件系统
- NameNode(nn):存储文件的元数据,如文件名、文件目录结构、文件属性(生成时间,副本数,文件权限),以及每个文件的快列表和块所在的DateNode等,是整个文件数据的存储
- DateNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和,其实即每个服务器就是一个DateNode节点
- Seconday NameNode(2nn):每隔一段时间对 NameNode 元数据备份
6、YARN 架构概述
- Yet Another Resource Negotiator ,简称YARN,另一种资源协调者,是Hadoop的资源管理器
* ResourceManager(RM):整个集群资源(内存,cpu等)的老大
* NodeManager(NM):单个节点服务器资源老大
* ApplicationMaster(AM):单个任务运行的老大
* Container:容器,相当一台独立的服务器,里面封装了任务运行所需要的的资源,如内存、cpu、磁盘、网络等
* 说明:- 客户端可以有多个
- 集群上可以运行多个applicationMaster
- 每个NodeManager上可以有多个Container
7、MapReduc架构概述
MapReduce将计算过程分为两个阶段:Map和Reduce
-
Map阶段并行处理输入数据
-
Reduce阶段对Map结果进行汇总
-
大数据技术生态系统
-
推荐系统案例
8、HDFS、YARN、MapReduce三者关系
- HDFS是一个分布式文件系统
- YARN负责资源的调度与管理
- MapReduce负责计算