给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
方法一:
从对角线为轴翻转,然后再以x轴中线上下翻转即可得到结果.
1,2,3 9,6,3 7,4,1
4,5,6 => 8,5,2 => 8,5,2
7,8,9 7,4,1 9,6,3
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n - 1; ++i) {
for (int j = 0; j < n - i; ++j) {
int temp = matrix[i][j];
matrix[i][j] = matrix[n - 1- j][n - 1 - i];
matrix[n - 1- j][n - 1 - i] = temp;
}
}
for (int i = 0; i < n / 2; ++i) {
for (int j = 0; j < n; ++j) {
int temp = matrix[i][j];
matrix[i][j] = matrix[n - 1 - i][j];
matrix[n - 1 - i][j] = temp;
}
}
}