整除的性质
1.0能被任何数整除(即对于任意的a来说,a|0)
2.若b能够整除多个数,那么b能够整除这些数的线性组合
3. 最大公因数gcd
若d为gcd(a,b)即d是a和b的最大公因子,那么d可以表达为a和b的一个线性组合
即最大公因子是1的时候称a和b互素(当a和b互素的时候就写这个ua+vb=1的式子)
互素的性质(两个数互素,这两个数不一定是素数)
第一条,ab互素且a整除bc,所以a整除c
第二条证明(ab整除c就是c能够写成ab的k倍):
当a和b的最大公因子是d时,a/d和b/d两个数是互素的
素数的性质
合数可以分解为两个比自己小的正整数的乘积,所以
任何大于1的整数都能被唯一的分解为有限多个素数的乘积(算术基本定理)
同余
推广
若a和b关于m同余且a和b的最大公因子为d
a=a1*d b=b1*d(此时会有a1和b1互素)