一、绪论
1.1 目标检测算法的定义和背景
1.2 目标检测算法在计算机视觉领域的重要性
二、目标检测算法的发展历程
2.1 传统目标检测算法
2.2 基于深度学习的目标检测算法
2.3 目标检测算法的评价指标
三、目标检测算法的关键技术
3.1 区域建议网络(RPN)
3.2 卷积神经网络(CNN)在目标检测中的应用
3.3 多尺度特征融合技术
四、目标检测算法的改进与优化
4.1 单阶段目标检测算法
4.2 目标检测中的目标跟踪技术
4.3 目标检测算法中的数据增强方法
4.4 端到端的目标检测算法
一、绪论
1.1 目标检测算法的定义和背景
目标检测是指在图像或视频中识别并定位出特定目标的过程。这些目标可以是行人、车辆、人脸等,目的是为了对现实场景中的物体进行自动化识别和分析。
目标检测是计算机视觉领域中一个重要且具有挑战性的任务。它旨在自动定位图像或视频中的目标对象,并绘制出每个目标的边界框。
目标检测在许多领域都有广泛应用,如安防监控、自动驾驶、机器人视觉等。随着深度学习的兴起,目标检测算法取得了长足进步。
1.2 目标检测算法在计算机视觉领域的重要性
计算机视觉对于目标运动的分析可以大致分为三个层次:运动分割,目标检测;目标跟踪;动作识别,行为描述。其中,目标检测既是计算机视觉领域要解决的基础任务之一,同时它也是视频监控技术的基本任务。由于视频中的目标具有不同姿态且经常出现遮挡、其运动具有不规则性,同时考虑到监控视频的景深、分辨率、天气、光照等条件和场景的多样性,而且目标检测算法的结果将直接影响后续的跟踪、动作识别和行为描述的效果。故即使在技术发展的今天,目标检测这一基本任务仍然是非常具有挑战性的课题,存在很大的提升潜力和空间。
因此,目标检测也就成为了近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分,同时目标检测也是泛身份识别领域的一个基础性的算法,对后续的人脸识别、步态识别、人群计数、实例分割等任务起着至关重要的作用。
二、目标检测算法的发展历程
目标检测即找出图像中所有感兴趣的物体,包含物体定位和物体分类两个子任务,同时确定物体的类别和位置。
2.1 传统目标检测算法
传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。
(1)区域选择:这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多。这也严重影响后续特征提取和分类的速度和性能。
(2)特征提取:由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。其中,这个阶段常用的特征有 SIFT、HOG等。
(3)分类:根据第二步提取到的特征对目标进行分类,分类器主要有Haar特征级联分类器等。
2.2 基于深度学习的目标检测算法
目前主流的目标检测算法主要是基于深度学习模型,其可以分成两大类:
(1)Two-Stage目标检测算法,这类检测算法将检测问题划分为两个阶段,第一个阶段首先产生候选区域(Region Proposals),包含目标大概的位置信息,然后第二个阶段对候选区域进行分类和位置精修,这类算法的典型代表有R-CNN,Fast R-CNN,Faster R-CNN等。
Two-Stage目标检测算法可以看作是进行两次One-Stage检测,第一个Stage初步检测出物体位置,第二个Stage对第一个阶段的结果做进一步的精化,对每一个候选区域进行One-Stage检测。整体流程如下图所示,在Testing的时候输入图片经过卷积神经网络产生第一阶段输出,对输出进行解码处理生成候选区域,然后获取对应候选区域的特征表示(ROIs),然后对ROIs进一步精化产生第二阶段的输出,解码(后处理)生成最终结果,解码生成对应检测框即可;在Training的时候需要将Ground Truth编码成CNN输出对应的格式以便计算对应损失loss。
(2)One-Stage目标检测算法,这类检测算法不需要Region Proposal阶段,可以通过一个Stage直接产生物体的类别概率和位置坐标值,比较典型的算法有YOLO、SSD和CornerNet;
相比于Two-Stage的目标检测算法不需要Region Proposal阶段,整体流程较为简单。如下图所示,在Testing的时候输入图片通过CNN网络产生输出,解码(后处理)生成对应检测框即可;在Training的时候需要将Ground Truth编码成CNN输出对应的格式以便计算对应损失loss。
2.3 目标检测算法的评价指标
目标检测模型的主要性能指标是检测准确度和速度,其中准确度主要考虑物体的定位以及分类准确度。一般情况下,Two-Stage算法在准确度上有优势,而One-Stage算法在速度上有优势。不过,随着研究的发展,两类算法都在两个方面做改进,均能在准确度以及速度上取得较好的结果。
三、目标检测算法的关键技术
3.1 区域建议网络(RPN)
RPN的本质是 “ 基于滑窗的无类别obejct检测器 ”。因为它是用来生成区域建议的,而不是直接对图像进行分类或检测。RPN通过滑动窗口在图像上生成一系列的候选区域(即region proposals),然后利用这些候选区域作为ROI(region of interest)送入后续的分类器或检测器中进行分类或检测。因此,RPN更准确地说是一种用于生成候选区域的算法,而非直接进行目标检测的算法。
RPN架构如下图:
提炼要点:
- RPN是一个全卷积网络,能同时预测候选区域的边界和置信度;
- RPN的提出目的是为了提升目标检测的效率(速度),使用RPN后与检测任务相比,候选区域的选择几乎是不耗费计算资源(nearly cost-free);
- RPN能提升目标检测效率的原因是RPN与分类器共用要检测的原图的卷积特征图;
- 首次提出锚框(anchor)的概念,在锚框提出之前候选框的选择只能通过各种尺寸的图像(pyramids of images)或者各种尺寸的算子(pyramids of filters),这也是为了提升目标检测的效率。
2016年,先进的目标检测网络如SPPnet、Fast R-CNN提出后,减少了目标识别任务的计算时间,使得区域候选成为了计算瓶颈。当时已有的区域候选算法:Selective Search,,SS仅能做到2s完成一张图像的区域候选;EdgeBoxes虽然更快,能做到0.2s完成,但是这是以牺牲计算质量为代价的。
通过不断的试验发现:给识别器(detector)做图像识别的卷积特征图也可以共用于生成候选区域,这样做可以减少计算生成候选区域的时间(少到每张图像的候选区域生成仅需要10ms左右),于是基于此提出了RPN网络。使用RPN区域候选 + 深度学习图像分类组成的目标检测识别算法能做到每秒完成5个目标检测任务,大大提升了检测速率。
RPN是整个 Faster R-CNN 模型的重要组成部分,原始图像首先通过一系列卷积层进行特征提取和处理得到特征图,RPN基于该特征图生成可能包含感兴趣对象的候选区域,以便后续的分类器能把“注意力”集中在这些后续区域内,提升整个目标检测任务的效率。RPN的一个重要特性就是平移不变性(translation invariant),带来的好处就是减小模型,更小的参数量能进一步提高计算速度。
RPN是一个全卷积网络,模型计算过程如下:
- 使用一个n×n滑动窗口(sliding window)在共享的卷积特征图上滑动并提取特征。每个滑动窗口的中间位置都对应有k个锚框(anchors),在本文中使用3种缩放比例×3种长宽比,共k=9种锚框;
- 对于每一个滑动窗口,通过卷积计算将其转换为一个固定维度向量(例如基础CNN为ZFnet时,该向量长度为256;基础CNN为VGG时,该向量长度为512),通常称为"中间层"或"隐藏层";
- 然后使用这个中间层作为输入,分别经过两个孪生全连接层分支(two sibling fully connected layers):分类层和回归层;
- 分类层输出的是每个格子属于各个类别(如人、车等)的概率分布,需要注意的是这里输出的是有物体和无物体,即正样本(前景)和负样本(背景)两个概率,因此输出长度为2k;而回归层则输出的是每个格子中心点相对于真实边界框偏移的距离值,中心坐标偏移加上长宽偏移共4个值,因此输出长度为4k。
3.2 卷积神经网络(CNN)在目标检测中的应用
卷积神经网络(CNN)在目标检测中的应用主要体现在其能够有效地提取图像特征,从而自动学习到图像的全局结构信息,有效地处理不同尺寸、纹理和色彩的图像。CNN通过其特有的卷积层和池化层结构,能够在目标检测任务中自动提取图像特征,而无需手动设计特征提取器。这种特性使得CNN在目标检测中具有显著的优点,包括能够处理不同大小和形状的目标对象,具有良好的泛化能力,并且可以通过反向传播算法进行训练,逐渐提高模型的准确性。12
在目标检测的具体实现中,CNN通常采用两个阶段的方法:首先使用卷积神经网络提取图像特征,然后使用分类器(如支持向量机(SVM)、逻辑回归(Logistic Regression)和softmax分类器等)来检测和定位目标对象。这种方法在许多领域都有广泛的应用,例如自动驾驶、安防监控、医学图像分析等。例如,在自动驾驶中,目标检测可以帮助车辆识别和定位其他车辆、行人、交通标志等,从而实现自动驾驶功能。
此外,基于CNN的目标检测方法还包括回归(Regression)技术,对每个检测到的对象进行坐标归一化到其真实世界的位置上,如边界框坐标等。这种方法进一步提高了目标检测的准确性和实用性。
综上所述,卷积神经网络在目标检测中的应用是通过其独特的网络结构和训练方法,自动提取图像特征并进行目标定位和分类,从而在多个领域实现了高效和准确的目标检测。
3.3 多尺度特征融合技术
多尺度特征融合是一种在图像处理和CV中使用的技术,由于其在各种任务中都通用,并且对改善识别、分类或检测任务的性能都非常有用,所以成了提升CNN性能的关键技术。
所谓多尺度,指的是不同分辨率的图片,或者是不同层次的图片特征(低层特征、高层特征),特征融合解决的是如何去利用这些不同分辨率的图片。因为低分辨图片比较模糊,能够获取物体的大致位置,但会忽略很多细节;而高分辨率图片,能够描述物体的更多细节,具有更多语义信息。
四、目标检测算法的改进与优化
4.1 单阶段目标检测算法
就是本文上面章节所介绍的<One-Stage目标检测算法>。
4.2 目标检测中的目标跟踪技术
4.3 目标检测算法中的数据增强方法
4.4 端到端的目标检测算法
现在主流的端到端的目标检测算法大都是基于Transformer实现。大致以下几种:
(1) DETR系列
开山之作!DETR!DE⫶TR: End-to-End Object Detection with Transformers
该方法作为Transformer
在目标检测领域的开山之作,一经推出,便引发了极大的轰动,该方法巧妙的利用Transformer
进行特征提取与解码,同时通过匈牙利匹配方法完成预测框与真实框的匹配,避免了NMS
等后处理过程。
(2) RT-DETR
尽管DERT已经大幅提升了检测精度,降低了计算复杂度,但其受Transformer
本身高计算复杂度的制约,DETR
类目标检测方法的实时性始终令人难以满意,尤其是相较于YOLO
等单阶段目标检测方法,其检测速度的确差别巨大。
(3) YOLOv系列
YOLOv9刚出才3个月时间,这就出YOLOv10了,感觉这YOLO版本更新速度真心有点快。
YOLOv系列在YOLO系列的基础上进行了优化和改进,旨在提高性能和效率之间的平衡。首先,作者提出了连续双分配方法,以实现NMS-free训练,从而降低了推理延迟并提高了模型的性能。其次,作者采用了全面的效率-准确性驱动的设计策略,对YOLO的各种组件进行了综合优化,大大减少了计算开销,并增强了模型的能力。实验结果表明,YOLOv10在各种模型规模下都取得了最先进的性能和效率表现。例如,YOLOv10-S比RT-DETR-R18快1.8倍,同时拥有更小的参数数量和FLOPs;与YOLOv9-C相比,YOLOv10-B的延迟减少了46%,参数减少了25%,但保持了相同的性能水平。