t检验可以解决单样本、双样本时的均数比较。当要比较的组多于两个时,t检验方法就难以满足这种需求,此时就需要使用方差分析来进行参数检验。
它比较的是组间差异。
方差分析介绍
方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。
适用条件
- 独立性
- 正态性
- 方差齐性
方差分析对样本独立性要求较高。
对正态分布是稳健的,样本正态性不会太大影响方差分析结果。
方差齐性方面,一般而言,只要最大/最小方差之比小于3,分析结果都是稳定的。
分类
- 单因素ANOVA
- 双因素ANOVA
- 协方差分析
- 多元方差分析
- 重复测量方差分析
R语言
方差分析在R语言中用aov函数实现。
格式:
aov(formula,data=dataframe)
formula为表达式。表达式可以使用的特殊符号如下:
符号 | 用法 |
---|---|
~ | 分隔符号,左边为响应变量,右边为解释变量。例如,用A、B、C预测y,代码为y~A+B+C |
: | 表示变量的交互项。例如用A、B和A与B的交互项来预测y,代码为y~A+B+A:B |
* | 表示所有可能的交互项。 |
^ | 表示交互项达到某个次数。代码y(A+B+C)^2可展开为yA+B+C+A:B+A:C+B:C |
. | 表示包含除了因变量外的所有变量。例如,若一个数据框包含变量y、A、B和C,代码y~.可展开为y ~A+B+C |
单因素方差分析示例
出于组间差异性检验的目的,为了方便仅展示单因素方差分析示例。
单因素方差分析即一个自变量一个因变量的方差分析。自变量为分类变量,因变量为连续变量。
数据集
所使用数据集multcomp包中cholesterol数据集。
数据集中,50