R语言差异检验:单因素方差分析

本文介绍了R语言中的单因素方差分析(ANOVA),包括方差分析的基本概念、适用条件、分类和R语言实现。通过示例详细阐述了如何进行单因素方差分析,以及如何进行多重比较和评估检验假设条件,如正态性和方差齐性。
摘要由CSDN通过智能技术生成

t检验可以解决单样本、双样本时的均数比较。当要比较的组多于两个时,t检验方法就难以满足这种需求,此时就需要使用方差分析来进行参数检验。

它比较的是组间差异。

方差分析介绍

方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。

适用条件

  • 独立性
  • 正态性
  • 方差齐性

方差分析对样本独立性要求较高。

对正态分布是稳健的,样本正态性不会太大影响方差分析结果。

方差齐性方面,一般而言,只要最大/最小方差之比小于3,分析结果都是稳定的。

分类

  • 单因素ANOVA
  • 双因素ANOVA
  • 协方差分析
  • 多元方差分析
  • 重复测量方差分析

R语言

方差分析在R语言中用aov函数实现。

格式:
aov(formula,data=dataframe)

formula为表达式。表达式可以使用的特殊符号如下:

符号 用法
~ 分隔符号,左边为响应变量,右边为解释变量。例如,用A、B、C预测y,代码为y~A+B+C
: 表示变量的交互项。例如用A、B和A与B的交互项来预测y,代码为y~A+B+A:B
* 表示所有可能的交互项。
^ 表示交互项达到某个次数。代码y(A+B+C)^2可展开为yA+B+C+A:B+A:C+B:C
. 表示包含除了因变量外的所有变量。例如,若一个数据框包含变量y、A、B和C,代码y~.可展开为y ~A+B+C

单因素方差分析示例

出于组间差异性检验的目的,为了方便仅展示单因素方差分析示例。
单因素方差分析即一个自变量一个因变量的方差分析。自变量为分类变量,因变量为连续变量。

数据集

所使用数据集multcomp包中cholesterol数据集。
数据集中,50

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值